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ABSTRACT

i :Numerical weather prediction models have not produced accurate

precipitation forecasts, especially short-term forecasts of significant

precipitation events. One reason for this has been that numerical

models are normally initialized with nondivergent winds. This means

I the model must develop a vertical motion field and an associated

precipitation field. Therefore, the initial precipitation rate is

underforecast and the precipitation forecast itself is adversely

Iaffected. One method of solving this problem is the initialization
of the divergent wind component (hereafter termed divergent

initialization). Previous divergent initialization attempts have been

primarily on the synoptic scale. These attempts did not produce a

i significant change in the initial precipitation rate. Divergent

i initialization on the mesoscale will be attempted here.

The general divergent initialization procedure proceeds as

follows: omega values are diagnosed using the omega equation;

velocity potentials are derived from the vertical velocities with the

continuity equation; the divergent wind components are obtained from

the velocity potentials; geopotentials are calculated on sigma

I surfaces using a balance equation with contributions from both the

nondivergent and divergent wind components; finally, balanced

temperatures are derived using the hydrostatic equation.

[ A scale analysis was performed on the vertical velocity and

divergence equations to determine the forms appropriate for the

F mesoscale (grid increments from 60 to 200 km). The scale-dependentT [ i

Il
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I
i differences of divergent initialization on the synoptic and mesoscales

were studied. Both nondivergent and divergent wind components are

I required for these equations. To obtain them, boundary conditions on

stream function and velocity potential are required. The low-wave-

i number boundary variation of stream function and velocity potential

Ishould be specified accurately to minimize the influence of the
boundary values on the solution in the domain interior. A method for

i specifying boundary conditions on velocity potential with accurate

low-wavenumber boundary variation was developed.

The forecast model used was developed at The Pennsylvania State

University. The version used here had six levels, low-resolution

planetary boundary layer physics, and a grid increment of 120 km.

g The mesoscale omega equation was solved by three-dimensional

relaxation over the domain. The observed rainfall rate was used to

I construct a parabolic omega profile. A heating rate was derived from

the profile and used as input for the diabatic term in the omega

I equation. On the mesoscale, the largest single term in the omega

equation was the diabatic term. The greatest uncertainty in the

calculation of omega values was the representativeness of the observed

precipitation rate.

Five 12-hour forecasts were conducted, two with unbalanced initial

conditions and three with different balanced initial conditions.

Three forecasts had essentially nondivergent initial conditions. The

fifth forecast was balanced on sigma surfaces and was initialized with



II

the total wind, the divergent part of which was derived from the oi

diagnosed omega field. The noise characteristics of the five

I forecasts did not differ greatly from those reported by other

investigators. However, the forecast from the divergent initialization

produced more precipitation than the other forecasts, especially in

the first three hours. Also, the divergent initialization produced

a more evenly distributed precipitation prediction. The forecast

I model retained the initial divergence. The effect of divergent

initialization was significant for this case and would likely improve

short-range precipitation forecasts from mesoscale numerical weather

prediction models.I
I
I
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V characteristic horizontal velocity

Y' YH horizontal wind velocity = ui + vj

V u x + v j on a constant pressure surface

uVi + vj on a constant pressure surface

I x horizontal coordinate of Lambert conformal projection;
at grid center, x-axis is oriented east-west

x x coordinate of a divergence source (Section 2.3.4)

y horizontal coordinate of Lambert conformal projection;

I at grid center, y-axis is oriented north-south

y coordinate of a divergence source (Section 2.3.4)

z vertical coordinate

Z generalized vertical coordinate = - ln(p/p) 04
aspecific volume

$ I  df/dy

Sf/ay on a rectangular grid

I! y lapse rate - - 3T/3z

"'1 f/ax on a rectangular grid

dry adiabatic lapse rate = g/c

Yd p1
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LIST OF SYMBOLS (Continued)I
i F static stability in Z coordinates

SC ) vertical finite-difference operator defined by (5.4b)

E €0.622

relative vorticity = k-V x V

I a 
+ f

O potential temperature

R/c ; wavenumber (Section 2.1.5)p

I udamping factor

T3.14159 ...

1 p density of air

ps  surface density of air

I p - pt)/p, a vertical coordinate

a s  static stability

avertical velocity in sigma coordinates

I z summation symbol

T i + T
zx zy

I surface stress component in the x direction

Tsurface stress component in the y direction
zy

* geopotential = gh

n geopotential at level n

perturbation geopotential

*R(X,y) when a Poisson equation is solved on a rectangular
RB domain, *DB is that portion of 0 (a general variable)

on the in erior of the domain due to the value of
on the right boundary of the domain
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LIST OF SYMBOLS (Continued)I

I latitude

X velocity potential

stream function

vertical velocity in pressure coordinates = dp/dt

I maximum omega in the convective omega profile

0 rate of rotation of the earth = 7.292xi0
- 5 s- 1

I Ax grid increment; characteristic model grid increment

(Chapter 1)

I Ax 1  characteristic synoptic model grid increment

Ax 2  characteristic upper meso-a scale grid increment

Ax3  characteristic meso-y scale grid increment

V nv) horizontal gradient measured on a surface of constant n

n where n - p, a, or Z

V (V ) horizontal Laplacian measured on a surface of constant n
I where n = p, a, or Z

7 2 finite-difference Laplacian

() mean value of C)

C--) Xfinite-difference average defined by (5.2c)

(-)Y finite-difference average defined by (5.2d)

()Y finite-difference average defined by (5.4a)

C') d( )/dt

I )a actual or known value of ( ) (Section 2.3.4)

C) esrocurrent value of ( ) (Section 2.3.4)
c

f g geostrophicC)

B boundary value of C
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LIST OF SYMBOLS (Continued)I
B-1 value of ( ) at the first interior grid point

)ij,k value of ( ) at point (i,j,k)

S( )i~j value of ( ) at point (i,j)

k value of ( ) at level k

( )obs observed value of ( )

S)p ( ) on a pressure surface

( )value of ( ) due to terrain

xfinite-difference operator defined by (5.2a); partial

differentiation with respect to x

( r finite-difference operator defined by (5.2b); partialI differentiation with respect to y

( ) ( ) on a sigma surface

I finite-difference operator defined by (5.3a)

( )Y finite-difference operator defined by (5.3b)

is identical to, is defined by

approximately, on the order of

<< at least two orders of magnitude smaller than

SIG magnitude of vector G = (G'G)
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LIST OF ABBREVIATIONSI
AW Anthes and Warner, 1978 (a reference)

CFL Courant-Friedrichs-Lewy

DI dynamic initialization

FD finite-difference

I FNWC Fleet Numerical Weather Central, Monterey, California

GCM general circulation model

GMT Greenwich Mean Time

LHS left hand side of the equation

MDR manually digitized radar (data)

I NCAR National Center for Atmospheric Research, Boulder, Colorado

NMC National Meteorological Center, Silver Spring, Maryland

I NWP numerical weather prediction

NWS National Weather Service

PBL planetary boundary layer

I PDE partial differential equation

PE primitive equation

PSU The Pennsylvania State University

RHS right hand side of the equation

RMS root mean square

SI static initialization

SLP sea level pressure

WAM Warner, Anthes, and McNab, 1978 (a reference)
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1.0 INTRODUCTION

Perhaps the four most important events to influence meteorology

I in the twentieth century are:

I (1) the development of the concept of a front,

(2) the development of a global rawinsonde network for the

I twice-daily sampling of the atmosphere,

(3) the invention of the electronic computer, and

(4) the use of earth-orbiting satellite platforms for the

observation of the atmosphere.

Simultaneously, meteorologists have gained increased knowledge and

insight into the physics of the atmosphere. All of this, coupled

with the very rapid developments in computer technology, has led to an

ever increasing interest in the mathematical modeling of atmospheric

I structures in general and in numerical weather prediction (NWP) in

particular.

Primitive equation models of the atmosphere require initial

j conditions for the mass and momentum variables. The initial conditions

are derived from a limited number of observations, particularly at

synoptic times. Many observations which are available, including some

at synoptic times, are not used to assist in defining the initial

conditions. Additionally, most observations that are used contain

errors. After a meteorological field is analyzed, it must then be

interpolated vertically and/or horizontally to define the field at

1-?
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the model grid points. This interpolation process also introduces

errors. Therefore, the entire data analysis process introduces errors

even though the process itself is er3ential for a model integration.

Once the model variables have been analyzed to the model grid

g points, it is usually desirable to balance the mass and momentum fields.

Balancing means that the mass and momentum fields are made compatible

I with one another so that the nonmeteorological accelerations produced

at the beginning of a forecast are minimized. Normally, balancing is

Iaccomplished by requiring that the mass and momentum fields initially

obey some diagnostic relationship. Examples of diagnostic relationships

include the geostrophic wind equation, the gradient wind equation, and

the balance equation. An initialization procedure of this kind, i.e.,

one which uses data primarily from one time and that does not use the

model equations for balancing, is known as a static initialization (SI).

For complex baroclinic models that contain complex parameteriza-

I tions of diabatic, frictional, and radiational effects, it is usually

difficult if not impossible to find simple but adequate diagnostic

relationships between the mass and momentum fields. This fact has

led to a new kind of initialization procedure known as dynamic

initialization (DI). The distinguishing feature of DI is that the|
model equations themselves are used for the balancing step.

In a standard SI, the initial conditions are customarily non- J
divergent because of the diagnostic balance relationship usually

employed. Although they are relatively simple, nondivergent initial

conditions do not permit a model to initially forecast precipitation

at the observed rate. Since mesoscale NWP models will be used

II I II
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primarily for short-range (6- to 24-hour) forecasts, it is especially

desirable for the model to accurately forecast the initial precipitation

rate. If the initial precipitation rate is greatly underforecast,

I then the model probably will not forecast precipitation correctly for

periods on the order of twelve hours because the model should not

overforecast precipitation late in the 12-hour period.

A method of correcting this precipitation rate problem, previously

employed primarily on the synoptic scale, has been the addition of a

divergent component to the nondivergent initial conditions. Normally,

this procedure consists of using the omega equation to get vertical

Ivelocities. Then the continuity equation with appropriate boundary

conditions is solved to get the velocity potential and the divergent

wind field. The divergent wind component is then added to the

nondivergent initial conditions. Generally, results with this technique

on the synoptic scale have produced little change over results based on

I nondivergent initial conditions. The objective of this thesis is to

study how the divergent wind component can be incorporated in a static

initialization on the mesoscale in such a way as to improve the

initial forecast precipitation rate. This should in turn improve the

model's forecast precipitation amounts for varying time periods.I °C
1.1 Review of the numerical model initialization problem

I Development of initialization techniques has paralleled the

development of numerical models themselves. Therefore, it is

F - _.. - _ - . . . II -i -- - i ...
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appropriate to review briefly the history of NWP before discussing

1 initialization.

I 1.1.1 Brief history of numerical weather prediction

I
The discovery leading to modern NWP was the realization that the

1 forecast problem can be treated mathematically as an initial value-

boundary value problem for the nonlinear partial differential

equations which govern atmospheric motion. L. F. Richardson (1922)

was the first to apply this idea. Richardson encountered several

problems which we are careful to avoid today. One of the problems

that led to his failure was the use of observed rather than balanced

data. The resultant large-amplitude nonmeteorological waves destroyed

I the meteorological forecast. Additionally, since computers were not

yet invented, a large amount of time was required for the calculations.

Richardson's failure resulted in a lack of interest in NWP that

I lasted about 25 years.

Renewed interest in NWP occurred in the late 1940's. By then

the use of rawinsondes made more accurate and more spatially and

temporally numerous observations available. Also, the electronic

computer had been invented. Simple "filtered" models, which eliminated

the large-amplitude fast moving waves (and thus permitted larger time

steps) that destroyed Richardson's forecast, were developed.

As computer size and speed increased, primitive equation (PE)

models came into use because they permit greater flexibility. Gravity-

inertia waves, which are meteorologically important in the atmosphere,

I



5
I

are allowed to exist in PE models. The philosophy is that the model

I which most closely resembles the atmosphere will best forecast the

atmosphere. However, this added flexibility requires much greater

care in the formulation of the initial conditions. One aspect of

that formulation is addressed in this thesis.

Improved numerical forecasts are hampered by three constraints

I (Haltiner and Williams, 1975):

I(1) The temporally and spatially continuous atmosphere

must be represented by data at discrete points.

ITherefore, the entire spectrum of atmospheric motions
cannot be resolved. In addition, numerous problems

Iarise due to the approximation of derivatives by

I finite differences.

(2) We do not completely understand the physics of the

I. atmosphere. Processes which make important contributions

to the evolution of the atmosphere are not adequately

represented. Also, computers are limited in terms

of their size and speed in spite of the very rapid

advances in computer technology.

(3) Inappropriate specification of the initial conditions

will limit forecast accuracy because a numerical

forecast is an initial value problem.

Dutton (1976) pointed out that even if the initial conditions

are perfect, the model's ability is limited because imperfectly

handled nonlinear interactions lead to forecast error growth.

_ _ _ _ _
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Nonlinear interactions produce unresolvable wavelengths which

erroneously appear on the grid at resolvable scales (this phenomenon

is called aliasing). Because the nonlinear interactions are always

I there, the error increases with each time step. Lorenz (1965) stated

that the difference between the forecast and actuality will eventually

be that of two random states for the appropriate time of day and year.

1.1.2 Stages of the initialization processI
The initialization problem has defied easy solution. The basic

stages of the process for grid-point models are:

1 (1) observation,

(2) analysis to grid points, and

(3) balancing the mass and momentum fields.

l The first stage has often been a problem because the observation

density is usually low. The observations also contain human and

instrumental errors as well as information on unresolvable scales.

The second stage consists of interpolation from observation

locations to grid-point locations and to a fixed time. Cressman (1959)

stated that interpolation should

(1) ensure internal consistency among variables,

(2) reduce observation errors, and

(3) smooth subgrid-scale features.
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The third stage in the initialization process can be crucial.

I Thompson (1961) noted that large-scale acceleration6 are due primarily

to small differences between forces. That is, the net accelerations

are 10 percent of the magnitude of the individual accelerations.

Therefore, to determine the accelerations within 10 percent, the wind

and horizontal pressure gradient force must be known within 1 percent.

This accuracy has not been attainable with most present-day observations

so observed data cannot be used directly as initial conditions.

IA dynamic balance may be defined as follows: mass (temperature

and pressure) and momentum fields are compatible (in "balance") when

the only accelerations produced by the mass and momentum fields

1generate features of meteorological importance. When an imbalance

exists between the mass and momentum fields, the atmosphere tends to

reduce the incompatibility through a mutual adjustment process. The

theory of this process has been developed by Rossby (1938), Cahn (1945),

and Washington (1964), among others. This theory, called the geostrophic

I adjustment theory, predicts that on the mesoscale, the wind field

dominates the height field in the adjustment process.

One of the mechanisms which accomplishes the adjustment process

is the gravity-inertia or gravity wave. A gravity wave is a wave

driven by the force of gravity which can redistribute mass and kinetic

energy. Gravity waves that are generated by imbalances in the initial

state traverse and then leave the domain and hence usually do not have

a major influence on the forecast after 12 to 24 hours. However,

unrealistic pressure fluctuations and accompanying vertical motions

[ can completely obscure meteorologically important motions during the• .
(I
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first twelve hours (Sasaki, 1969; Haltiner and Williams, 1975). This

fact has made short-term forecasting difficult. If the model initial

conditions have not been balanced to an adequate degree, the

meteorologically important part of the forecast can be permanently

and adversely altered by the model's response to the initial imbalance.

Incompatibility between the mass and momentum fields can be

generated in many ways:

(1) errors Are contained in the observations,

(2) observations have contained information on scales of

motion not represented,

(3) interpolations, both vertical and horizontal, have

I reduced the balance, and

(4) a balanced state in the atmosphere does not necessarily

correspond to a balanced state in the model because of

the numerous approximations contained in the model.

As an example of (4), Nitta and Hovermale (1967) pointed out that

boundary conditions and finite difference methods employed in the

numerical formulati.on of the model atmosphere can produce gravity-

inertia waves.

1.1.3 Balancing of the mass and momentum fields in PE models

The purpose of balancing is to reduce the generation of

nonmeteorological gravity-inertia waves without altering the

rmeteorologically important motions. Unfortunately, the balanced state

(
*1I _ _ _ _ _ _ _ _ _ _ _ _ _I
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for complicated models that include friction, cumulus convection,

radiation, etc., is usually unknown.

There are two common and several less common types of balancing

methods (Bengtsson, 1975; Baer, 1977). The types of balancing methods

I are:

(1) static initialization (SI),

(2) dynamic initialization (DI),

g (3) initialization by statistical methods,

(4) initialization utilizing dynamical integral constraints, and

(5) normal mode initialization.

They can be summarized as follows:

i (1) SI. In a static initialization (SI), information

applicable primarily at one time is used. Time derivatives in the

equation of motion are usually neglected to get a diagnostic approxima-

tion to the balanced state. Examples of diagnostic relationships that

have been used are the geostrophic wind equation, the gradient wind

equation, and the balance equation.

(2) DI. The other common balancing method has been dynamic

initialization (DI). In DI, the actual model equations are used

complete with time derivatives. A DI may utilize data from one time

only. However, some DI techniques employ data from two or more times.

In this type of DI, sometimes called four-dimensional data assimilation,

a preforecast integration, usually forward in time, is performed.

(3) Initialization by statistical methods. The National

Meteorological Center (NMC) of the National Weather Service (NWS) has

i
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used no separate initialization for their operational 6-level PE

model. The forecast is started directly from the products of the

objective analysis. The model is initialized with analyzed geopotentials,

analyzed nondivergent winds, and 12-hour forecast divergent winds. This

procedure was adopted because the short-range forecast errors were

smaller than when the balance equation was used.

(4) Initialization with dynamic integral constraints. To

minimize noise, the initial analyses can be adjusted to each other such

that they satisfy some given equation(s). The most successful approach

has been that of Sasaki (1958) which is based on the calculus of

variations. First, for each meteorological variable, the difference

between adjusted and observed quantities at a point is expressed as a

sum of squares. Then the integral over the volume of all the sums of

squares is minimized such that a given constraint is satisfied. This

method's major drawback has been its complexity.

(5) Normal mode initialization. First, the normal modes of

response for the model to be initialized must be determined. For

example, a simple baroclinic model may have one fast external gravity-

inertia wave mode and one slow internal gravity-inertia wave mode.

The observations are then resolved into a series expansion of the

normal modes in such a way as to detect the fast and slow modes.

Then the coefficients of the fast modes are set equal to zero. With

I this method, the initial vcrticity field is presumed correct and the

corresponding geopotential and divergence fields that would eliminate

high-frequency noise are found. This initialization technique is

extremely complex, time consuming, and is just beginning to be used.

N_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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1.2 Previous research on the initialization of PE models

1.2.1 Historical review of initialization

The early work on initialization consisted primarily of replacing

subjective techniques for the analysis of observations to grid points

I by objective analysis. The first objective initialization technique

was due to Panofsky (1949). Panofsky approximated wind and pressure

Iobservations by third-degree polynomials requiring 10 coefficients.
gBoundaries and data-sparse regions were difficulties encountered with

this method.

The successive correction type of objective analysis was first

introduced by Bergth6rsson and DS6s (1955). First-guess values of

I geopotential were obtained. These values were then corrected by

geopotential and wind observations in one additional scan over the grid.

Cressman (1959) also employed the successive correction method of

1 objective analysis. He made several passes with an increasingly small

radius of influence. Because of the method's simplicity and its

applicability to most atmospheric variables, even in data-sparse

regions, it was the primary analysis tool of the NWS until its

I replacement in 1974.

As models became more sophisticated, research on balancing

became more important. One of the earliest studies of mass-momentum

balancing was by Hinklemann (1951). Using a linear barotropic model,

he showed that the amplitude of the undesired gravity-inertia waves

was reduced by replacing the observed winds with geostrophic winds.

I $I
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Charney (1955) utilized the balance equation to obtain geopotentials

I from the wind field. Using a primitive equation model and artificial

winds, he showed that the generation of large amplitude gravity-inertia

waves was greatly suppressed when geostrophic winds were replaced by

balanced winds.

1.2.2 Dynamic initialization

I Dynamic initialization was first studied by Nitta and Hovermale

(1967). To balance the mass and momentum fields, the initial conditions

on mass and momentum were forecast one time step forward followed by

I one time step backward. Then the mass or momentum field was restored

to its initial value. The cycle was repeated numerous times. The

I resulting gravity-inertia waves were damped by the Matsuno (1966) time

differencing scheme. It was shown that the model equations could be

I used to achieve balanced initial conditions.

A dynamic initialization technique was also studied by Hoke and

Anthes (1976). In this technique, a 12-hour pre-forecast integration

j is performed in which the model variables are nudged toward the observed

value of the variables at each grid point and time step. Subsequent

1 12-hour forecasts were better than those forecasts started from a SI.

However, this kind of DI had disadvantages. First, it required

I additional computer time (in this case 24 hours of simulated time for

a 12-hour forecast). Second, at the end of the pre-forecast integration,

the model variables have not necessarily been close to the known grid

point values.

I'
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Temperton (1976) performed experiments in dynamic initialization

with a 5-level hemispheric model. The model was run 10 days to achieve

a balanced state which was considered the control run. Temperton

I found that external gravity waves led to smaller forecast rain amounts

than occurred without external gravity waves. Additionally, he found

that dynamic initialization yielded smaller rain amounts than the

control. Temperton showed that external gravity waves should be

rapidly damped by DI while the low frequency internal modes are

relatively unaffected.

11.2.3 Normal mode analysis and initialization
I

Phillips (1960) and Blumen (1975) have suggested incorporating

the model's normal modes of response into the initialization process.

Flattery (1970) employed Hough functicns in his analysis scheme in

I which atmospheric data are expanded in terms of the Rossby modes of

free oscillation of the shallow fluid equations. This implied that

no gravity-inertia waves should be generated in an exact integration

of the linear equations.

Dickinson and Williamson (1972) suggested linear normal mode

Iinitialization and determined the normal modes of a 2-level model
based on the shallow fluid equations expanded in terms of spherical

harmonics. Williamson (1976) then applied a normal mode initialization

to a shallow water grid-point model. He found reduced gravity-inertia

oscillations in nonlinear integrations but the gravity-inertia waves

were not eliminated.

rLF
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Williamson and Dickinson (1976) determined the normal response

modes (vertical and latitudinal) for the linearized National Center

for Atmospheric Research (NCAR) general circulation model (GCM).

I The ensuing integrations were found to contain less noise.

Machenhauer (1977) and Baer (1977) have extended normal mode

initialization to include nonlinearity. Machenhauer first determined

the free normal modes of a spectral, hemispheric, shallow fluid model.

He then determined which nonlinear interactions between normal modes

I lead to gravity-inertia waves. The time derivative for the normal

mode coefficients for unwanted modes was set to zero. Machenhauer

also stated that normal mode initialization produced significant

I changes in the forecasts and is complicated and time consuming.

Another disadvantage of this type of initialization has been that

I if the model is changed, the normal response modes are changed, and

the model normal modes must be reanalyzed.

I Baer (1977) applied normal mode initialization by allowing

nonlinearity to affect the initial conditions in such a way as to

eliminate gravity-inertia waves in the initial conditions and prevent

most of them from occurring during the time integration. Baer assumed

the initial vorticity was accurate. He then adjusted the geopotentials

I and divergence so they were compatible with the vorticity field. In

effect, the high-frequency waves (external gravity and fastest

internal gravity waves) were eliminated. However, the slower gravity-

inertia modes have speeds comparable to Rossby modes and were not

affected.

3
I,I
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Baer and Tribbia (1977) extended Baer's (1977) technique to

any prediction model of a planetary fluid of reasonably small Rossby

number.I
1.2.4 Geostrophic adjustment

I Geostrophic adjustment was discussed briefly in Section 1.1.2.

However, 0kland (1970) reached some conclusions which are important

I to this work and they will be presented here.

Okland found a linear solution to a simple linear baroclinic

model for given initial conditions. The solution consisted of two

I parts: (1) high-frequency gravity-inertia waves, and (2) low-frequency

gravity-inertia waves which effect a balance between the mass and

I momentum fields. 0kland believed that the solution to the general

analogous initial-value problem, if it could be derived, would consist

I of two parts; the one being high-frequency gravity-inertia waves and

the other the balanced mass and wind fields which exhibit much lower

frequency.

Ikland stated that gravity waves may be suppressed by damping or

propagation away from the area of interest. A damping integration

scheme such as the Euler-backward scheme could be used but the slower

internal gravity waves move at about the same speed as the Rossby modes.Ii
Hence damping the slower gravity-inertia waves would also damp the

waves of interest. Dispersion of the wave energy from the source would

be effective for waves with high group velocities. If the initial

1 data created waves of small group velocity, then those waves would

1 4
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disperse slowly and the adjustment would be slow, a situation to be

I avoided. In contrast with baroclinic models, barotropic models of

deep motions contain only one mode and it is fast (an external gravity

wave with a speed of about 300 m s- ). Therefore, the adjustment in

barotropic models is relatively rapid.

Okland conducted two experiments with a 2-level baroclinic model.

I The model was allowed to run for 24 hours. Experiment I was the next

24 hours of the forecast. In Experiment II, the divergence was

removed from the initial conditions before the second 24-hour forecast

I was begun. He plotted the root-mean-square (RMS) values of the local

rate of change of surface pressure and the RMS values of omega (the

I vertical velocity in pressure coordinates) at about 500 mb. The

pressure curves were more indicative of external gravity wave activity.

I Gravity wave activity can be visualized as the effect of all gravity

waves simultaneously acting to modify the balance between the mass and

momentum fields. This activity was greatest for the nondivergent

initial conditions (Experiment II). The RMS omega graphs were more

indicative of the internal gravity-inertia wave activity. This

activity contained less noise in the case that contained the divergence

(Experiment I).!
1.2.5 Balancing on sigma versus pressure surfaces

Most PE models today employ pressure or normalized pressure (sigma)

as the vertical coordinate. Reasons include: upper air data are

f reported on standard pressure levels; density does not appear explicitly

___ .1pi
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in the model equations; and, the boundary conditions at the ground are

I easier to formulate. The mesoscale model developed at Penn State (see,

e.g., Anthes and Warner, 1978, hereafter referred to as AW) uses the

sigma coordinate system. In the initialization of this model,

geopotentials are calculated on pressure surfaces. Balanced temperatures

are then derived and the winds and temperatures are interpolated to the

model sigma surfaces.

Since the nonlinear balance equation has been used, the model

initial conditions have been nondivergent and the initial vertical

ivelocity (omegd) at each grid point should have been zero. However,

I I Warner et al. (1978, hereafter referred to as WAM) reported that small

omega values on the order of 10 mb d- I are introduced on the sigma

surfaces in the interpolation from pressure to sigma surfaces. In

other words, the initial balance has been altered. These omega values

on sigma surfaces are largest where terrain slopes are greatest and

hence have not necessarily corresponded to meteorological features.

Since the model-generated omega values were much larger, the small

initial omega values have not been considered to be a problem.

An alternative approach has been to interpolate the model

variables to sigma surfaces prior to balancing. Sundqvist (1975)I
interpolated observed geopotentials to sigma surfaces and then used

the nonlinear balance equation to calculate the stream function on

sigma surfaces. He used a hemispheric five-level model with a grid

length of 300 km at 60'N. His scale analysis of the divergence equation

in sigma coordinates indicated that the nonlinear balance equation was

Iappropriate for his model. The initialization on sigma surfaces

| | |
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reduced initial gravity-inertia wave oscillations when compared with

initialization on pressure surfaces and interpolation to sigma

surfaces. However, an initialization on sigma surfaces with orography

U included produced mora gravity-inertia wave oscillations than an

initialization with no terr:ain.

I 1.2.6 Effect of divergent initial conditions

Phillips (1960) pointed out that the removal of gravity-inertia

waves from even simple models is not just a matter of specifying

initial geostrophic or nondivergent flow. Small values of divergence

g were actually needed in the initial conditions to suppress these

waves. To specify the initial divergence in baroclinic models,

Phillips proposed various forms of the geostrophic omega equation. The

adiabatic geostrophic omega equation relates vertical motion to the

I advection of temperature and vorticity.

Warner (1972) initialized jets in barotropic channel and

hemispheric models. He used the following initializations:

(1) geostrophic,

(2) mass field in balance with the fully divergent wind field,

(3) mass field in balance with the nondivergent wind field, j
(4) quasi-gradient, and

(5) backward-forward integration about the initial time (a

type of DI).

V !
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The geostrophic initialization was clearly inferior as curvature is

neglected. The most important finding relevant here was that the

initializations including divergence in the initial conditions ((2)

I and (5)) produced the least gravity-inertia wave noise.

1.2.7 Previous divergent initialization techniques and their effect

on precipitation predictions

The initialization of the divergent component (hereafter referred

to as divergent initialization) has been attempted by several

researchers. Houghton et al. (1971) obtained omega values from a

diagnostic equation similar to the omega equation. Their omega

equation did not contain a diabatic term. The coarse-mesh grid used

had grid points at five degree intervals in latitude and longitude. The

divergent initial conditions had a small effect on the dynamic variables

I at first, no effect after 12 hours, and the same level of noise as the

nondivergent initial conditions. The initial conditions were not

saturated where vertical motion was present and the effect of divergent

initialization on precipitation was not evaluated. They stated that

it may be that poor model resolution of the small scales inherent in

[ the vertical motion field contributed significantly to the lack of

forecast improvement.

Lejends (1977) used the quasi-geostrophic omega equation without

a diabatic term to obtain omega fields on a coarse-mesh grid (grid

increment 300 km). The continuity equation was then used along with

a relaxation procedure to convert the omega values to velocity

__ _ __ _ _ __ _ _ __ _ _
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potentials. After adding the divergent component to the initial

conditions, he found a higher precipitation rate than the nondivergent

forecast for the first four hours, a lower precipitation rate from

4 to 10 hours, and the same noise level as nondivergent initial

I conditions. The moisture field initially was not saturated. The

effect of divergent initialization on the dynamic variables was not

reported. Although the precipitation forecast was more realistic, it

was significantly less than the observed precipitation. We would

I expect that after the model has reached a balanced state internally,

the initial divergent component would no longer be important. Instead

the model would have produced a divergent component compatible with

the model's nondivergent component.

Dey and McPherson (1977) initialized the divergent component in

the NMC coarse-mesh hemispheric PE model. The initial balanced state

was derived from observations. The divergent component was derived

I from a model forecast valid at the same time. A vertical velocity

i equation was not used. Dey and McPherson had thought that divergent

initialization might be beneficial if applied over several forecast

cycles, but the divergent initialization caused only small changes in

both the global analyses and forecasts. The only differences in the

precipitation forecasts occurred in areas of very light precipitation

and therefore the significance was difficult to assess. They concluded

that divergent initialization neither degraded nor improved the

performance of the NMC global system. Additionally, Dey (personal

communication) reported that a forecast divergent component that wasrapplicable 5 days before the initialization time was inadvertently
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added to balanced initial conditions in one experiment and no

significant change in the forecast resulted.

Lubeck et al. (1977) have performed divergent initialization

I experiments with a global spectral model. They concluded that the

divergent initialization had a relatively small effect on the forecast

dynamic variables. A semi-implicit integration scheme was used to

smooth the high frequency oscillations. Orography was not included

in the experiments. Also, the model was dry and therefore the effect

I of the divergent initialization on precipitation could not be evaluated.

Smagorinsky et ai. (1967) did experiments with a global 9-level

PE model. They used a form of the omega equation with no diabatic

term. The experiments started with a divergent initialization produced

almost the same precipitation as forecasts started from nondivergent

initial conditions.

Benwell et al. (1971) used a 10-level PE model for divergent

I initialization experiments. They reported slightly larger precipitation

amounts with nondivergent initial conditions.

Divergent initialization has also been used in hurricane models.

In hurricanes, the divergent part of the wind is large and forecasts

beginning with the total wind have been more successful than those

started from the nondivergent component only. Miller et al. (1972)

obtained the stream function and then temperatures were derived. The f
I quasi-geostrophic omega equation with a diabatic term was solved for

omega values which are in turn used in the continuity equation to obtain

velocity potentials (presumably the relaxation boundary condition was

1 one of constant velocity potential). The total wind was obtained by

I

I
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combining the divergent and nondivergent parts. Temperatures and winds

were then forecast. From that forecast, the time dependent terms in

the complete divergence and omega equations could be evaluated. The

I heights, temperatures, and omega values were recalculated. The process

* was repeated until the heights and omega fields were relatively stable.

This process was similar to DI. The areal extent of their precipitation

forecasts agreed with the observed rainfall. However, the forecast

precipitation amounts were too low. The model atmosphere was not

I saturated initially and the forecast model did not contain a convective

precipitation parameterization. The adequacy of the initial precipitation

I rate was not evaluated.

Mathur (1974) used an omega equation similar to the quasi-geostrophic

omega equation but it did not contain a diabatic term. The omega values

were then used in the continuity equation to obtain velocity potentials.

Again, presumably a constant value was used as the boundary condition

I on the velocity potential. The meshed grid increments were 37 km on the

interior and 74 km on the exterior. The hurricane studied occurred

entirely over the ocean and observed precipitation fields were not

I available.

In summary, there has been a lot of work on the various aspects

[ of the initialization problem. The work to date on divergent

initialization has been primarily on the large or synoptic scale. On

I that scale, the divergent initialization has had little if any effect

on the forecast. The divergent initializations on the mesoscale have

been for hurricane models. The resulting forecasts were evaluated by

comparing forecast versus observed track and intensification. The
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I
adequacy and suitability of the divergent initializations as compared

with nondivergent initializations were not evaluated. The effect of

divergent initialization on precipitation forecasts was not closely

I scrutinized. Finally, diabatic heating information and asynoptic

data were not utilized in the initialization schemes.

1.3 Synoptic scale versus mesoscale divergence values

Before any further discussion of the differences between the

synoptic and mesoscales, we will present a more quantitative definition

Iof the scales. In Table 1, we adopt Orlanski's (1975) scale definitions

but we have subdivided the meso-B scale into upper and lower portions.

In subsequent sections, synoptic scale will refer to meso-a and larger

scales and the term mesoscale will refer to the upper meso-a scale

unless otherwise noted.!
i Table 1. Scale Definitions.

Scale designation Scale range (km)

! 2meso-6 2-20

mneso-6 20-200

lower meso-a 20-60 III
upper meso-a 60-200

meso-a 200-2000

macro-B 2000-10000

iI
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As discussed in Section 1.2, divergent initialization on the

I synoptic scale had little if any influence on the precipitation

forecasts. We will now attempt to gain some insight into why divergent

initialization has not been successful on the synoptic scale but might

be successful on the mesoscale and smaller scales. Let V be a

characteristic velocity and Ax a characteristic horizontal model grid

increment. For the scales in Table 1, 10 m s- 1 is a characteristic

velocity. For characteristic grid increments, let us compare a

synoptic model grid increment Ax1 = 300 km, an upper meso-8 scale grid

increment Ax2 = 100 km, and a lower meso-a scale grid increment

Ax3 = 30 km. We can now compare typical divergence values for the

three different grid increments.

We know from the divergence theorem that the net divergence over

the global 500-mb surface is zero. We would expect the same result to

be approximately correct for a hemisphere. In fact, as we will discuss

in more detail in Chapter 2, the net divergence on a constant pressure

surface over an area of about 3500 km on a side averages almost to

zero. However, at grid increments on the order of Ax3, there exist

phenomena such as thunderstorms that possess large divergences. These

divergence patterns could easily dominate over a small grid and produce

large net divergence at a given level.

Since V is the same for each length scale, and since divergence

is of order V/Ax, we expect an order of magnitude larger divergence

values as we progress from Ax to Ax The grid increments AXl, Ax
1 3' hegi2nrmnsA 1 ,

and Ax3 each differ by a factor of three but the area contained within

each grid square is almost an order of magnitude different. That is,

4
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(Ax1 )
2  10 km2 (Lx) 2  10 km2 and (x) 2  103 km2. Therefore,

I we can visualize a much larger net divergence over an area (Ax3)2 than

2
over an area (Lx1 )

I Thus, the divergence at a grid point can be larger in mesoscale

models than in synoptic scale models. Because divergence is the forcing

function in the Poisson equation for velocity potential (and hence the

I divergent component), we expect a mesoscale divergent component of

greater magnitude than on the synoptic scale. In other words, the

divergent component may well be a significant ingredient in mesoscale

model initial conditions while previous research has indicated that it

Iis not significant in that respect on the synoptic scale. We will

accomplish a scale analysis in Chapter 2 to see how significant the

divergence can be expected to be on the mesoscale but we have demonstrated

here in qualitative terms that, if divergent initialization is to

significantly affect a precipitation forecast, it would most likely

I occur on the mesoscale and smaller scales.

1.4 Research objectives

I
To date, precipitation forecasting with NWP models has not been

very accurate, especially in cases of significant precipitation.

Accurate and timely precipitation forecasts on the mesoscale would be

of great economic and other value in times of flash floods, squall

lines, heavy precipitation over large areas such as hurricanes, etc.

Therefore, a divergent initialization procedure which improves

mesoscale NWP model precipitation forecasts would be an important

contribution.

i 4



I
26I

A general divergent initialization procedure developed in this

thesis can be described as follous: a vertical velocity equation

diagnoses vertical velocities from observed meteorological fields.

I Velocity potentials are then derived from the vertical velocities with

the continuity equation and knowledge of appropriate boundary conditions

on velocity potential. Next, the divergent wind components are

I obtained from the velocity potential. Geopotentials are calculated

on sigma surfaces using a balance equation with contributions from

I both the nondivergent and divergent wind components. Finally, balanced

temperatures are derived via the hydrostatic equation. Note that the

vertical velocity and divergence fields are diagnosed. We cannot

I accurately measure divergence directly because the errors in the wind

observations are on the order of magnitude of the divergent wind

I component. Therefore, we derive a vertical velocity equation that

defines what vertical velocity field would exist for a given set of

I dynamic and thermodynamic variables.

Questions to be addressed in this thesis include:

General:I
(1) What are the differences between divergent initialization

on the synoptic and mesoscales?

(2) Does the inclusion of a divergent component on the

mesoscale improve the ensuing forecast, especially

precipitation rate and amount? Analogously, does the

model remember the divergence as introduced by the

initialization?

i t
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(3) Do modeled precipitation systems recover their "correct"

intensity later in the forecast, after a nondivergent

initialization, or are the precipitation rates throughout

I the forecast adversely affected by the incorrect vertical

velocities and latent heat release produced early in the

forecast by the lack of initial divergence?

(4) What form of the omega and balance equations should be

used on the mesoscale?I
Specific:

(5) Can the vertical velocities be diagnosed to sufficient

I accuracy to be useful in the divergent initialization

procedure?

(6) What boundary conditions should be used on stream function,

omega, and geqpotential?

1 (7) The continuity equation is used to derive velocity

potential from vertical velocity. How should the

boundary conditions on velocity potential be specified

to achieve maximum accuracy on the domain interior?

i The forecast model that will be used for these experiments is

the mesoscale NWP model developed at The Pennsylvania State University

I (see WAM, AW). In Chapter 2 a scale analysis of the relevant equations

as well as a thorough analysis of the appropriate boundary conditions

I for the required dependent variables will be provided. In Chapter 3,

a brief description of the forecast model will be given. The data at

the initial and final synoptic times, the observed precipitation, and

Ii4
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a discussion of the synoptic situation chosen for study will be

I presented in Chapter 4. In Chapter 5, we will develop the finite-

i difference form of the omega equation which will be used to determine

vertical velocities. The omega equation will then be applied to the

data set. In Chapter 6, the finite-difference form of the balance

equation will be derived from the model equations. In Chapter 7,

the finite-difference balance equation will be applied to the chosen

data set. Chapter 8 will contain the summary and conclusions.

I
I
I
I

I

I II
I

I
[
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2.0 DEVELOPMENT OF THE DIVERGENT INITIALIZATION PROCEDURE

In this chapter, we will first state which forces are considered

in the forecast model developed at The Pennsylvania State University

(PSU). Then we will perform a scale analysis of the complete

vertical velocity and divergence equations. These scale analyses

. will specify which terms must be retained in the respective equations
for use in the specific divergent initialization procedure. Finally,

Iwe will examine which boundary conditions should be employed for the

various second-order elliptic partial differential equations (PDEs)

which arise in this scheme. We shall see that the proper specification

of boundary conditions is important to this initialization procedure.

The general framework for the divergent initialization procedure will

be outlined whereas the specific technique for the initialization of

the PSU model will be addressed in later chapters.

I Before we can perform the required scale analyses, we need to

know what forces are considered by the PSU model. That is, we need

to know what form of the equation of motion is used so that we can

derive consistent vertical velocity and divergence equations. The PSU

model considers the pressure gradient force, the Coriolis force,

j gravity, and the vertical frictional force in the planetary boundary

layer (PBL) only. Additionally, horizontal frictional forces are

used by the model at every level, but for numerical rather than

physical reasons.

I|
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2.1 Scale analysis of the vertical velocity equationI

Scale analysis is a technique which permits the determination

I of what terms in a given equation are important, based on characteristic

values of physical variables and characteristic scales in space and

time of the class of phenomena of interest. Here, we are interested

in the upper meso-a and larger scales (e.g., baroclinic waves).

The scale analysis presented here, through (2.19), closely

follows that of Williams (personal communication). We define

L = characteristic horizontal scale (roughly a quarter

wavelength of the disturbances considered)

IT =characteristic time scale

V = characteristic horizontal velocity

The approximate magnitudes of derivatives can be estimated as follows:!
au-au - (2.1a)Ix y L

au V (2.lb)

at T

The time scale is generally given by

T , (2.2)
V.

Here we will use V u 10 m s- I for the synoptic and mesoscales, L 1 1000 km

for synoptic-scale motions and L '1 100 km for mesoscale features.

- , !I
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The Helmholtz theorem states that a velocity vector can be

I separated into nondivergent and divergent (irrotational) parts:

I V=V +V x (2.3)

I
where

KI
V = k x (2.3a)I

1 and

V = X . (2.3b)

I In (2.3a) and (2.3b), p is the stream function and X is the velocity

potential. Since we know that the magnitude of the nondivergent wind is

on the order of the observed wind for the scales (upper meso- and

larger) considered, we use
I

1

V (2.4)
I

for the scale of the nondivergent wind. On the other hand, the

divergent wind is generally an order of magnitude smaller. Therefore,

we use

r
V RV (2.5)x 1

I

-4 . . .f
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I
where R 0.1, but for the upper meso-6 and larger scales of motion

I which we consider here, R could be as small as zero or as large as

0.3.

I In addition to those scaling parameters, we will use

I i l(2.6a)|L

Ro =- or Ro (2.6b)

D RI V (2.6c)IJ
1 L

(2.6d)

I L

I and

S= Vf d df = cos ( d f (2.6e)dy TY co y%a (.e

for mid-latitudes. If the wind were geostrophic, then

V %fV (2.6f)[
Now we separate the geopotential into two parts.

r = O(z) + 0' (2.6g)



33

In (2.6g), ,' is the perturbation geopotential and O(z) is taken from

the standard atmosphere. With (2.6a), (2.6f), and (2.6g), we obtain

(2.6h).I
IfV or 4'%fVL (2.6h)L

IEven though the wind is not geostrophic on the upper meso-6 scale,

(2.6h) is adequate for scaling purposes.i

12.1.1 Pertinent equations in Z coordinates

We utilize the vertical coordinate Z which was first used by

Phillips (1963):I
ZE-ln(p-) (2.7)

Z is related to actual height, h, and geopotential by the equation of

state and the hydrostatic equation:

RT p -pg Lh (2.8)

From (2.8) 
we see that

a - -" , (2.9)

ap 3Z
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One advantage of Z is that it approximately equals the actual height

divided by the scale height. That is,

I Z , h (2.10)
H

I
where H = RT/g is the scale height. For the atmosphere, H 8 km.

ITherefore, for the troposphere,

IZ 1 (2.10a)

and

I
| - 1 (2. lOb)

From (2.7) we see

. .i . (2.11)

1 p
The horizontal vector equation of motion in Z coordinates which

contains the forces considered by the PSU model is

I (. 1V+ V.VV + Z + 7 + f x V - Fr 0 (2.12)
at ~ ~~

I The continuity equation in p coordinates is

v. + 2- 0 (2.13)

I ";-
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Using (2.11) and (2.9) to modify (2.13), we obtain the continuity

equation in Z coordinates:

I +7 Z = 0 (2.14)

With the hydrostatic equation, the first law of thermodynamics can be

Iwritten

I wL t + V-V 2 + i- L(L + K ) = KQ (2.15)

where K = R/c and Q is the heat added per unit time and mass.p

2.1.2 Derivation of the vertical velocity equationI
To obtain a vertical velocity equation, we must first have a

1vorticity equation. Operating on (2.12) with V x yields

I__
+ V . + Vx.V4 + V .f

+ V Vf + + fD + D (2.16)
-x az

+ k.VZ x -i +kV7 x - V x Fr =0

With (2.6g), (2.15) can be rewritten as

V
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S + V *V + V *V + ZF(Z)3t 3z 3z x 3z

(2.17)

I z .~.(~++ Ko') - KQ-- 0

I where

r(Z) = *ft~z + KT%)az @Z

= L + KT) (2.18)
az

H 2g + 19DT
H C ZT p

P is a static stability because it is proportional to the difference

l between the dry adiabatic lapse rate and the standard atmospheric

i lapse rate.

We derive the vertical velocity equation by operating on (2.16)

with f -, subtracting V2 of (2.17), and reordering terms:

F(Z)V 2i f 2 3D + V -_2. + ')

TI T2 T3a T3b

I (2.19)
f 2- yV.V + fo I vx' V2 "V V 2L
0 fo 0f 10 az

T4 T5 T6

Ia II la

I

II
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V q2V .V + 172Q + fo -

-x 3z o~~ a-Z az

T7 T8 T9

III I II

+ f VxFr + f V *"f + f i V Vf

i TI0 TIl T12

II III III

3 aVSf 2 D + -VZ x -+ f 2 k'VZ x X (2.19)"o 3z oD + fo o 3Z Z
(cont.)

T13 T14 T15I III III

+ +f 3 3C _ 7
2  i

" at aZ at aZ

Tl6 T17

( In the derivation of vertical velocity equations, it is usually

assumed that the local rate of change of the actual vorticity equals

Ithe time rate of change of the geostrophic vorticity (hereafter

called the geostrophic vorticity assumption), where the geostrophic

vorticity is

I
1C = 1 72 (2.20)

We make this assumption here, and will return to it in Section 2.1.5.

j i
' t
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2.1.3 Scale analysis of the vertical velocity equation

From the continuity equation (2.14), we obtainI
V

RI  (2.21)

since D R 1 
.

Table 2 contains a scale analysis of (2.19) which includes a

Iscaling factor for each forcing function. First, consider the synoptic

scale, where L \ 1000 km. For mid-latitudes, that implies Ro x 0.1.

The value of CD is taken to be , 0.001 (Anthes, 1978) and H is 1 10 km.

For this length scale, L/a n 0.1. We choose a precipitation rate of

0.1 cm h- 1 as typical of a synoptic-scale grid square (R2 = 0.1 in T8 in

Table 2). Examination of the scale factors of (2.19) reveals that

the forcing functions T4, T6, T8, and Tll are of order 10-14 while

I terms T5, T7, T9, T10, T12, T13, and T14 are an order of magnitude

smaller. The largest forcing functions represent differential

vorticity advection by the nondivergent wind, the Laplacian of

temperature advection by the nondivergent wind, the diabatic term, and

the beta or Coriolis term. These are important physical processes on

the large scale. For divergent initialization on the large scale, the

four largest forcing functions should be used in the vertical velocity

I equation. It should be noted that three of the four largest terms

1 (T4, T6, and Tll) are the forcing functions of the quasi-geostrophic

vertical velocity equation. This is a well-known result (e.g., see

Haltiner, 1971).

r I
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Table 2. Scale analysis of the forcing functions

in the vertical velocity equation.

Term Scale
designator factor

1 V 1 V 1 V3I ~~~~T4 T -o V L

Ro L LL Ro 3
L

RlIV 3

T5 T5 R T4 , - L
1 RoL3

1 1 V 3

T6 T6 %_Vf VL -
L L

R 3RI V 3

T7 T7 RI T6 , --o LV
Ro 3

8 LL

T8 Let R2be a precipitation rate of 1 cm h .Then,

2for each cm,

R2=1 gh
-

600 cal h
- 1

2400 joule h-

1 joule s

Therefore, Q N R2 per unit mass in mks units and

KR2  RIR 2
T8 2 1. 2

2 2

19T9 V VV lV
Ro L L L Ro L 3

.. .



I
40I

Table 2 (Continued)

I
Term Scale

designator factor

T10 The model friction term in the bulk-PBL parameterization

(see AW) can be scaled

I F a a i_ i 3 sCD2
p, p, Z p, a

C 3
1 VilCD22 1 CCD 3

Therefore, T10 iCV2 1 D V
Ro L L H D Ro H L3

1 2 i 3

T I T I iV V 1 L L V

Ro L Ro a L 2 a 3

Ro 3

T12 T12 no R Tll ,1 LV 3

R2 a L3

T13 T13 1 V V , RI V

RI V3
T14 T14 T13 LV

Ro L3

1 i VVV 1 V3

T6 Ro L L L Ro L

SV L 1- V V I V3

L L 2 Ro 2 L Ro L3

II
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2.1.4 Determination of the mesoscale vertical velocity equation

I
On the mesoscale, L ', 1000 km. For mid-latitudes, that implies

i h- 1

Ro 'u and L/a 0.01. We take a precipitation rate of 1 cm h as

being typical of a mesoscale grid square (R2 = 1 in Table 2). Using

these values, the relative order of magnitude of the forcing functions

Iin (2.19) except for T16 and T17 is indicated in Roman numerals

underneath the terms in (2.19). The largest forcing function is the

diabatic term, T8, with a value of order 10 Therefore, in areas

where precipitation is occurring, the diabatic term dominates the other

forcing functions on the mesoscale. Terms with a Ia (T4 and T6) are

an order of magnitude smaller in precipitation areas. These terms

represent differential vorticity advection and the Laplacian of

I temperature advection. Note that these terms will be the most important

terms in areas where no precipitation is occurring. Terms with a II

(T5, T7, T9, T10, T13, and T14) are of the same order but are an

order of magnitude smaller than the terms with a Ia. Forcing

Ifunctions with a III (Tll, T12, and T15) are of the same order but are

an order of magnitude smaller than the terms labeled II.

The goal of this research is to develop and test a divergent

initialization technique on the mesoscale. Since the divergent

component is an order of magnitude smaller than the nondivergent

I component on the mesoscale, and since we desire to diagnose the

vertical velocities as accurately as possible, we will retain terms of

first and second order and discard only those terms at least two

orders of magnitude smaller than the most significant terms. That is,

a n m m w mh i | |.
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I
we will keep terms labeled I, Ia, and II while discarding terms

I labeled III. Therefore, the final mesoscale vertical velocity

equation consists of terms Tl, T2, T3a, T4, T5, T6, T7, T8, T9, T10,

I T13, and T14 of (2.20) and will be referred to as (2.22).

The omega equation corresponding to (2.22) is

23 2,
(a (W) + fc f 2-V * 7

Tl T2 T3

II

+ f2- V.V + _E V2V *VT + - V .VT
p- x p ~ p -x

I T4 T5 T6

, I(2.23)

f -f D + f 2 w + f 2- 7wV -p

T7 T8 T9
I II II II

2RL V2 Q + f g L vxT
cpp ap 9p x
p

TIO Tll

I II

r where c is the static stability.

a RTae (2.23a)
s pe ap

{S

i-i i . I -__ _
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Beneath each term is a Roman numeral indicating the term's relative

importance on the mesoscale. Eq. (2.23) with appropriate boundary

conditions will be used in Chapter 5 to diagnose omega fields from

Ireal data.

It is interesting to note the differences between the synoptic

and mesoscales. The beta or Coriolis term is a first-order term on

* the synoptic scale but is negligible on the mesoscale. That is, as

we go to smaller scales, the Coriolis force is less important and

the wind is less geostrophic. The other significant difference between

the scales is that although the diabatic term is important on the

synoptic scale, it is relatively more important on the mesoscale.

While the diabatic term should be included on the synoptic scale, it

is even more important to include it on the mesoscale. In other words,

j local forcing by latent heating is more important on smaller scales.

We expect that the vertical velocities to be diagnosed on the mesoscale

in Chapter 5 will reflect the diabatic effect to a larger degree than

the other forcing functions.

For divergent initialization to succeed, the initial divergence

j must be remembered by the model. That is, it must be supported by

the model. Otherwise, the initial divergence will be dissipated by

internal gravity waves. The initial divergence must be balanced by

latent heating, especially on the mesoscale. If the divergence is not

I maintained by latent heating, it will not be remembered. Latent

heating should occur immediately (in the first time steps of the

forecast) in areas of upward motion. Therefore, those areas should

II
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initially be saturated for stable layers and the convective parameteriza-

Ition scheme should produce convective heating in unstable moist layers.
As stated in Chapter 1, divergent initialization on the synoptic

scale has had little effect. There was little effect on the dynamic

variables and a slight if any effect on the initial precipitation

rates. Where the omega equation was used in the determination of the

I divergent component, the omega equation did not contain a diabatic

term. Although the initial moisture fields were not given, we speculate

they were not initially saturated in areas of upward motion. Hence the

initial divergence would not be sustained by the release of latent

Iheat. Also, some of the terms in the vertical velocity equation that

are most important on the synoptic scale such as vorticity advection

are more susceptible to initialization-related noise. It is therefore

g possible that the initial divergence was dissipated before it could

effect the initial precipitation rate. We will later show that on the

mesoscale, the initial divergence is retained by the forecast model.

It is possible that the divergent initialization procedure presented

1 here could produce better results than those previously obtained if

applied on the synoptic scale.

1 2.1.5 The geostrophic vorticity assumption

In the derivation of the vertical velocity equation in Section

2.1.2, we assumed that the local temporal rates of change of the

Iactual vorticity and the geostrophic vorticity were equal. Without

I II _ _ _ _ _

•___
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this assumption, the vertical velocity equation would be predictive

rather than diagnostic.

It is well known that the geostrophic vorticity assumption is a

good approximation on the synoptic scale where quasi-geostrophic

theory applies. In fact, this assumption has often been used to

obtain the vorticity field from the observed height field rather than

I from wind observations. Scale analysis was applied to terms T16 and

T17 of (2.19) as shown in Table 2. We see immediately that the terms

are almost equal in magnitude and opposite in sign. It first appears

that the geostrophic assumption will be valid at all scales. We know,

however, that where the effects of curvature become important or

where the divergent component is large such as in gravity waves, the

geostrophic vorticity assumption is not at all accurate. For gravity

I waves, the scale analysis breaks down because the advective time

scale is no longer appropriate for terms T16 and T17 of (2.19).

I Therefore, if this divergent initialization scheme were applied in

the future to smaller scales, terms T16 and T17 may have to be included

in the vertical velocity equation used.

Finally, on length scales where the geostrophic vorticity

assumption breaks down, the terms labeled with a III in (2.19) may not

be negligible in comparison with the I and II terms. In other words,

the specific vertical velocity equation used for the divergent

initialization of the PSU model depends on the smallest length-scale

r feature that will be permitted. The smallest permissible length scale

depends on the grid increment, the data availability, the method of

analysis, and the degree of smoothing.

II
I

1-- __ _ _ _ _- -
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2.2 Scale analysis of the divergence equation

I
This scale analysis will be conducted analogously to the one in

i Section 2.1. The same scaling relationships will be used.

1 2.2.1 Derivation of the divergence equation

Recall that (2.12) is the equation of motion in Z coordinates.

We obtain the divergence equation by operating on (2.12) with 7- to

obtain

3V av
V. + 7- [(v.v)v] + v. (ZI 

(2.24)

I + 72%, + V.(fk x V) - V.Fr 0

1 Using (2.3), (2.24) becomes

)t+ 7-[V +-VX. -

Tl T2a T2b

(2.25)

+ V V + V .VV ] .-i p-x -x Z

T2c T2d T3a
II III II

l
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+ 7-Z v2'' - fC - k x Vf.-

T3b T4 T5a T5b

I III I I IlI2.5 (2.25)

(cont.)

-kx Vf-V -'Fr= 0

T5c T6IIII III

which is the complete divergence equation in Z coordinates.

As is customarily done, we will neglect the time-dependent term

Ti. This leaves a diagnostic relationship which can be termed the

complete balance equation. In Section 2.2.4, we will analyze the

effect of neglecting this term.

J2.2.2 Scale analysis of the balance equation

f We will examine (2.25), term by term (see Table 3). For the

synoptic scale, where L 1- 1000 km and Ro n 0.1, terms T2a, T4, T5a,

and TSb are at least an order of magnitude larger than the other terms.

These terms are the advection of momentum, the Laplacian of geopotential,

the Coriolis parameter times the relative vorticity, and the beta term,

(" respectively. The equation containing only these terms is commonly

referred to as the nonlinear balance equation. A form of that

I equation has been used in the nondivergent initialization of the PSU

model (WAM; Keyser, 1978; Anthes, 1978). It has been previously

:L _ _ _ . ... . .. ... ... ..

_ _ _ _ _ _ _
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I
Table 3. Scale analysis of the divergence equation.I
Term Scale

designator factor

V V V2

ITI TI R R I  R VR

L 1lL 1 L2

IT2a T2a 1 V I V I V2_
L

V2IT2a T2a I Ta-VRI-

V2I T2b T2b"' R T2a v R1 1
* L

V2

T2c T2c R T2a R:11 12

2 V2
T2d T2d R T2b% RI L

1 V V2

T3a T3a R V , R VIL I L 1 L2L
2 _

T3b T3b R T3a R 2V

1L2

1 V2

T4 T4 fVL

L Ro L 2

T5a T b I V VIRo LL RoL2L

UT5b T5b nu V%-V n -V L-V
a Ro L a Ro a L2

T5c T5c R Tb ̂ - Ro L 2

1 Ro a2

TT O of (2.19)] C 3 CD V2

T6 T6% [To of VI

I
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substantiated that the above terms dominate on the large scale (see,

i e.g., Haltiner, 1971).

2.2.3 Determination of the mesoscale balance equation

i As in Section 2.1.4, we use for mid-latitudes and the mesoscale,

L u 100 km, Ro nu 1, L/a ,, 0.01, H u 10 km, and CD \ 0.001. With these

values, the relative order of magnitude of the terms in (2.25) is

indicated in Roman numerals underneath each term. As with (2.19),

the difference between I and II is an order of magnitude. Because

I we are interested in a divergent initialization, we include the terms

1 containing the divergent component and, because we are interested in

accuracy to second order, we neglect terms labeled III (T2d, T3b,

T5c, and T6). Therefore, the final mesoscale balance equation is

composed of terms T2a, T2b, T2c, T3a, T4, T5a, and T5b, and will be

referred to as (2.26). The difference between the synoptic and

mesoscale balance equations is the relative importance of the Coriolis

force on these scales. On the synoptic scale, the beta term is a

first-order term. On the mesoscale, the beta term becomes two orders

of magnitude smaller than the first-order terms.

[ In order to achieve maximum consistency with the forecast model,

which should help the model "remember" the divergent component, theII
balance equation will be applied on sigma surfaces. Sigma is defined

by

P - Pt P - Pt
a P P* (2.27)

s t

I
_ . Ii
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Iwhere p is the pressure of the sigma level, Pt is the pressure at the

model top, p is the surface pressure, and p = P- Now, for

Pt = 0, we can showI
3 3 =(2.28)

II
With (2.28), term T3a of (2.26) becomes

I v * a(2.29)

and T4 becomes

7 • [0v + RT Vp] (2.30)P,I
Therefore, the mesoscale balance equation in sigma coordinates isI

i [V 7 + V '  + V VV

+ V + V - [7 , +E- Vp] (2.31)

I - ff - k x Vf-V = 0

where V and V are defined on pressure surfaces. That is, if

I V -v 0, then V .V is not necessarily zero because of the slope of

the sigma surface. In this thesis, the terms nondivergent and divergent

J will always apply to pressure and not sigma surfaces.

4



II
51

2.2.4 Effect of neglecting the local rate of change of divergence

The local rate of change of divergence was neglected in the

i determination of the balance equation in Section 2.2.1. This

assumption is often made on the synoptic scale. The scale analysis in

Table 3 shows that Ti of (2.25) is an order of magnitude smaller than

the largest terms. We will show that this assumption is reasonable

on the upper meso-B scale.

We can examine the effect of the local rate of change of

divergence term in the diagnosis of geopotential. Let the entire

divergence equation be

2 ; = (2.32)

I
A one-dimensional analysis is sufficient and hence we can write (2.32)

Ias
1 2

2 . _ ;D (2.33)

I 3x
2  ;t

3D

Let ! be expressed with a spectral representation asI
3D iKx
T = D e (2.34)
I-

1 where D has dimensions of s-2 and K 27T/L is the wavenumber. Therefore,

we can write (2.30) as

i

• • m | m -
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I 22 = - D e (2.35)

I2
Integration of (2.35) twice with respect to x yields

* D iKX

= e +cx+c 2  (2.36)

I where cI and c2 are arbitrary constants. Therefore, the error in

geopotential associated with the neglect of this term is on the order

I of

DIerror 2 (2.37)

Choose a typical mesoscale divergence of 10 s The mesoscale

length scale -. , 105 m and the velocity scale V 1 10 m s- 1 imply a

time scale of 104 s. Therefore,

9210 s (2.38)

Now (2.37) becomes

I error 42 (2.39)

With (2.38) and L % 105 m, (2.39) gives

2 -2
terror '0.25 m s (2.40)

I 1
II

TI __
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Hence for the local rate of change of divergence term to be important

i on the upper meso-0 scale, large values of divergence are required.
3D

Fankhauser (1974) reported that -L was large in the vicinity of

a squall line but was small away from the active convection. With

3D
this result and (2.40), we conclude that neglecting the 9D term on

the mesoscale is an acceptable approximation. The term might become

important on smaller scales and may have to be included there.

12.3 Boundary conditions required by limited domains

1 The diagnostic equations for the mesoscale, derived in this

1chapter, are second-order elliptic PDEs. For purposes of this

discussion of boundary conditions, they can be represented as Poisson

equations. For global or hemispheric models, boundary conditions have

not been a major problem. However, the attainable resolution has

been coarse at best. Limited-area models have been developed primarily

to obtain increased horizontal as well as vertical resolution. But,

because the limited-area domains have boundaries, boundary conditions

must be specified on the dependent variables or else the problem of

solving the equation is not mathematically well posed (Ames, 1977).

The specification of boundary conditions for limited-area NWP models

and their initialization schemes has indeed been a problem. In this

section we will examine the boundary conditions required by the

r divergent initialization scheme for the following variables: stream

function, geopotential, omega, and velocity potential.

I
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2.3.1 Boundary conditions on the stream function

I
Several of the terms in the omega and divergence equations

I require knowledge of the nondivergent wind. The nondivergent wind

is related to the stream function by (2.3a) and the stream function is

related to the vorticity field by

l2
2 =(2.41)

I
Vorticity is calculated at the interior grid points and can be

I calculated on the interior if we know B" There are numerous methods

i presented in the literature for the determination of B (see, e.g.,

Phillips, 1958; Anthes, 1976; Brown and Neilon, 1961; Bedient and

Vederman, 1964; Hawkins and Rosenthal, 1965; Sangster, 1960; Shukla

and Saha, 1974; Schaeffer and Doswell, 1979; Stephens and Johnson,

i 1978; Endlich, 1967). We will present an appropziate method after

demonstrating what property the chosen method must possess. Before

presenting that method, however, we will look at another means of

I avoiding boundary effects.

A method which may improve upon the results obtained by the

I aforementioned authors has been used by Anthes (1976), Anthes (1978),

Keyser (1978), and Elsberry and Ley (1976), among others. The idea

I is to initialize on a domain larger than that over which the model

will produce the forecast, thus minimizing boundary effects by moving

them away from the forecast domain. However, we choose not to use

this approach in this thesis for the following reasons:

I

iI
• I | I
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(1) It is not always possible to enlarge the domain.

fFor example, in certain situations, auxiliary rawinsonde

measurements are taken over limited areas (Hill and

Turner, 1977). Hence, there are no data on which the

enlarged initialization domain could depend. Also,

it is not always desirable to enlarge the initialization

domain. Enlarging the domain could mean incorporating

ocean or other data-sparse regions where the boundary

values of the meteorological variables contain more

uncertainty than in data-dense regions. Thus expanding

the initialization domain could result in an inferior

initialization on the forecast domain.

(2) It i. computationally inconvenient to enlarge -he domain.

(3) We will show that, by taking a few reasonable

precautions, the boundary values of i (and X) can be

determined to sufficient accuracy for purposes of this

thesis without expanding the initialization domain.

Keyser (1978) analyzed the effect of boundary conditions on

the solution of a Poisson equation such as

V2 (x,y) = F(x,y) (2.42)

where the rectangular domain is defined in x and y by 0 < x < L

and 0 - y < D Following Morse and Feshbach (1953), that portion of

the solution due to pB for the right boundary (QRB) can be written as
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I sinh nT

(xY) 1 in n vD c(Ll,y) sin yiv dy
Rs Di n=l sinh Di 

L n o D
D 1 1(2.43)

I
There are four other terms in the total solution, one for each of the

other three boundaries and one for the forcing function. For this

discussion, we need to consider only one boundary. Since (2.42) is

I linear, we may interpret (2.43) for a single harmonic without loss of

generality. Define i as

nir L I

sinh DI Lx

1 1 (2.44)

sinh n7ILiD
For a given distance2 from the boundary, for increasing wavenumber, the

Ivalue of A decreases. Therefore, p is called a damping factor. Keyser

plottedI
n7 LI  x_

= f( D l (2.45)

l Iand this is reproduced as Fig. 1. From this argument emerged two

very important conclusions (Keyser, 1978):

(1) The influence of boundary conditions on the solution

decreases exponentially with distance from the

boundaries.

j (2) It is most important to accurately specify the large-

scale (low-wavenumber) variation of the boundary
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Fig. I. Plot of contours of i representing the
fractional damping of the boundary
condition at x/L = I as a function of
distance normal to the boundary and wave-

number (Keyser, 1978).
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58I
conditions since amplitude errors for low-wavenumber

I components of the boundary conditions damp less rapidly

with distance away from the boundary.!
Keyser extended the analysis to a discrete domain but the conclusion

regarding correct specification of the large-scale variation of the

boundary conditions was unaltered.

ITherefore, in examining the adequacy of the methods for

determining pB' we need only concern ourselves with choosing a method

capable of correctly specifying the low-wavenumber variation of B"

WAM, Anthes (1976), and Keyser (1978) report that when Anthes (1976)

method was used to evaluate B1 the required correction to v
I nb

(observed boundary normal wind component) was on the order of a

few tenths of a meter per second. Since the magnitude of v itself* n
was about two orders of magnitude larger than the correction applied,

then the large-scale features are retained in the corrected vn. In

other words, since the observed wind was predominantly nondivergent,

v was almost vn We conclude that Anthes (1976) method may be
n~obs

used to solve (2.41) in the determination of the nondivergent wind

I for the scales studied here.

Anthes (1976) method is based on:

(v + cB) (2.46)s n obs  B

1 where
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CB Lp vnobs sd (2.47)

I
and where L is the length of the domain perimeter. First, cB is

computed from (2.47). Then, after one B value is specified, (2.46)

I is integrated around the boundary to obtain a complete set of tkB values.

That is, the mean divergence over the domain is removed from v by
obs

I applying an equal correction to each boundary observed normal wind

component.

2.3.2 Boundary conditions on geopotential for the balance equation

We know from the discussion of the previous section that the

large-scale variation in geopotential must be accurately specified.

I The usual method of calculating B has been to assume that the boundary

winds are geostrophic and integrate

f - (2.48)
3s as

around the boundary. WAM reported that this approach was unsatisfactory

because wind analysis errors accumulated around the boundary. Therefore,

WAM used the observed heights on the boundary. This did indeed

preserve the large-scale geopotential variation.

Keyser (1978) and Anthes (1978) used FNWC (Fleet Numerical

Weather Central, Monterey, California) analyses for numerous

initializations and subsequent forecasts. They claimed that the large-

scale geopotential boundary variation was preserved and hence
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= Bo was an adequate boundary condition. That is, it did not

aB bsI introduce any significant error in geopotential on the domain interior.

Therefore, we adopt the use of observed boundary heights as the

I boundary condition for the balance equation in this thesis.

2.3.3 Boundary conditions on omega for the omega equation

The omega equation will be solved by three-dimensional relaxation

and therefore boundary values of omega for the top, sides, and bottom

of the domain volume are required.

For the top of the domain (250 mb), we set omega equal to zero.

If the 250-mb level is the top of the features and circulations

being modeled, then this choice makes meteorological sense. Since

the 200-mb level is the top data level used, then there is really no

other reasonable alternative. Also, the model itself requires zero

I omega at the top pressure level.

Omega is also set to zero on the side faces of the domain volume.

This is mathematically expedient but probably somewhat unrealistic.

The meteorologically interesting feature is normally placed near the

center of the domain. Hence there are usually no large divergence

values near the boundaries. With this precaution, omega values of

zero at the side boundaries approximately represent the correct large-

Iscale boundary variation of omega. We will adopt this precaution here.

1 The PSU model uses terrain heights as the lower boundary

condition on geopotential. The terrain in turn induces an omega at

the surface. The terrain-induced omega, w can be written

omega, Wt

I
_ _ _ _ _ _ _ _ _ _ _ _ _I
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i = t gP v17h (2.49)
wt RT~

where h is the terrain height. We use scale analysis to estimate the

importance of this effect. From (2.11), we can write

i t (2.50)
IPS

Therefore, (2.49) becomes

zt iVh Vh
y Vh % (2.51)

t RT- ~ HL HI.

Using the scales H 10 km, L - 100 and a terrain
gradient of 0.001 (a 100 m rise in 100 km is not uncommon), we get

-6 -1It Z 10-  s . Note that in mountainous terrain, a slope of 0.01

would be more appropriate and Z would be an order of magnitude larger.

These terrain-induced vertical velocities are indeed significant.

I In more familiar coordinates, we get

= 12 b10 6  1-

Wt - Ps it 1 b1

(2.52)

4 1 1I 10 -  cb s- u 10 cb d-

Vertical velocities in the mid-troposphere normally don't exceed

10 cb d-  except in sharp troughs and precipitation areas. We conclude

that the terrain effect omega values should be used as the lower

boundary condition for the omega equation relaxation.

i

,V
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2.3.4 Determination of appropriate boundary conditions on velocity

I potential

I Velocity potentials are required so that the divergent wind

component can be supplied to the omega and balance equations. Using

(2.3b) and (2.13), we obtain

2
VX =D (2.53)I

or

V 2X (2.54)

I We can solve (2.53) given values of omega and XB.

Several methods for the determination of XB have been used

Ipreviously (see, e.g., Brown and Neilon, 1961; Bedient and Vederman,

1964; Shukla and Saha, 1974; Endlich, 1967; Schaeffer and Doswell,

1979; Stephens and Johnson, 1978). Most of the above methods involve

I at least one assumption. Two of the methods (Schaeffer and Doswell,

1979; Stephens and Johnson, 1978) have accurately separated observed

wind fields into nondivergent and divergent components. However,

here we will diagnose vertical velocities and therefore divergenceI
values. We want a divergent component corresponding to these divergence

values and not necessarily related to the observed or nondivergent

winds. We will develop a means of accurately specifying the large-

scale boundary variation of velocity potential.

l I
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The divergence theorem may be written

I

i where G is an arbitrary horizontal vector, A is the domain area, and s

is distance along the domain perimeter, the line integral being

I positive in the counterclockwise sense. Applied to the velocity

vector, (2.55) becomes

V-V dA D dA nVds (2.56)

In words, (2.56) states that the integral of the divergence over the

entire domain can be calculated by integrating the normal boundary

component around the boundary. That is, if the normal velocity

component integrates to zero, there is no net divergence over the

l domain.

In finite difference form, (2.56) becomes

M-1 N-1 NBP
Ax Z Z D = Z v (2.57)

i=2 j=2 k-l nk

where M is the number of grid points in the y direction, N is the

number of points in the x direction, and NBP is the total number of

boundary points. Now, from the omega equation, we can calculate the

left hand side of (2.57). Therefore, we know the mean value of the

normal velocity component. Since a- 0, it follows that
as

II l 1 I -l
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I1
v n.V, n= nX Du (2.58)I

Now we know the mean boundary value of aX sinceI an

v L (2.59)

where the subscript c means the correct value.

The complete method for obtaining XB with correct low-wavenumber

I variation is as follows:

j (1) Use (2.57) and (2.59) to compute the exact mean value

of the normal derivative of velocity potential required

I to satisfy the known forcing function.

(2) Set X over the domain and XB equal to zero.

(3) Begin to solve

I
2
7X- D (2.60)

by relaxation wh:re

Xij+1 + Xij- 1 + Xi+l,j + XI1,j (2.61)4(Ax) 
2

where Ax is the grid increment. Apply n iterations.

(4) With a one-sided difference, compute the mean boundary

value of ax that currently exists on the domain after nan

iterations (- , where the subscript a means the
a

actual mean boundary value).

.........................-'I ,,i l ----- -
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(5) Compute

BADJ = v - ax (2.62)ln n
a

where the LHS of (2.62) is the mean correction that

must be applied to the existing -X so that the known
an

boundary value, vn, will be realized.

(6) Apply the mean normal derivative correction by

extrapolating outward from the first interior grid

point. That is, for each boundary point, compute

I XB = XB- + Ax.BADJ (2.63)

j where XB-1 is the value of X at the first interior

grid point.

(7) Return to step (3). Repeat this cycle m times.

(8) XB now has the correct large-scale boundary variation.

Apply a direct solver (Rosmond and Faulkner, 1976;

jSwarztrauber and Sweet, 1975) to obtain X over the
entire domain for the given XB values and forcing

function.

[ The advantages of this procedure are:

1(1) It imposes no arbitrary boundary conditions.

(2) The method is physically realistic and mathematically

I sound. It is physically realistic because information
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about the known forcing function is transmitted

I to XB through the relaxation procedure. It is

well-founded mathematically because it forces the

boundary value of 2-to approach the value it must3n

have for the given forcing field. We are interested

in the correct gradient of velocity potential and not

X itself since only the X gradient has physical meaning.

The boundary values of X that result are those that

would exist if the domain were infinite. The method

is mathematically equivalent to using a Green's

function solution of (2.53) (Hayek, personal communication;

Morse and Feshbach, 1953). The applicable Green's function

for Cartesian coordinates is

G(xX,y,y o) I ln [(x-x ) + (y-y ) 2] (2.64)
or~o0 0I

The solution to (2.53) is therefore (Morse and Feshbach,

1 1953)

X(x,y) { f D(xoy ) G(xxo yy) dx dy (2.65)

where (x,y) is a boundary point and (xY o ) is any

I interior point where the divergence D is defined. For

each boundary point, (2.65) must be applied for every

interior point. Green's function solutions have the

advantage that no boundary conditions on X are required.

1
[
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However, (2.64) becomes infinite as x approaches x

and y approaches yo. Therefore, (2.65) is computationally

difficult to use in practice. Since we will now

demonstrate that the method presented here is effective,

we will use it in this thesis for the determination of

XB -

To demonstrate the validity of the XB method, several numerical

experiments were performed on a 15 by 15 grid with a grid increment

of 100 km. The scenario was to generate an analytic X field, compute

the divergence (forcing function) at each grid point, and calculate

v. Then the X values over the entire domain were zeroed and the

method was applied. Table 4 contains a summary of the experiments.

Figures, however, are included only for Experiments 2.2a through 2.2d

since they are the most severe meteorological tests. For each experiment

the value of n in step (3) was nine. That is, nine relaxation scans

were made over the domain for each boundary normal component adjustment.

In Experiment 2.1, a circular initial velocity potential pattern

was placed at the center of the domain. For Experiment 2.2, the

center of the circular velocity potential pattern was shifted left to

a position near the left boundary (Fig. 2). For Experiment 2.3, the

initial X field was given byJ
0.75

XAsin 0 I jAx (2.66)

L 1

A
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where A is the amplitude of the sine wave and here corresponds to a
| -1

divergent wind speed of 5 m s Note there is no y variation of x.

I In Table 4, MAXBDY is the number of iterations for which XB was

corrected. For each experiment, Table 4 gives the vn adjustment

applied (BADJ), the RMS (root-mean-square) error in ux and v the

average RMS error, the percentage reduction in RMS error, and the

Inumber of iterations (MAXBDY) for each experiment in which the method

was applied. The percentage reduction in RMS error is the percentage

Iby which the RMS error of the X gradient was reduced after Experiments

j2.1a, 2.2a, and 2.3a.

In Experiment 2.2a, the final X pattern (Fig. 3a) has little

resemblance to the initial pattern (Fig. 2). The average gradient

-1
error corresponds to a velocity of 0.35 m s . In Experiment 2.2b,

I with the method applied for 54 iterations, the final X pattern (Fig. 3b)

looks much closer to the initial pattern. Experiments 2.2c (Fig. 3c)

and 2.2d (Fig. 3d) show additional improvement in the XB accuracy as

1 well as the average RMS error.

When this method is used to compute XB and subsequently X, the

RMS error in the gradient of X is not completely eliminated. Instead,

the error decreases and then oscillates around some value as the value

of the boundary correction (BADJ) levels off. lor example, Experiment

2.1b actually has a slightly smaller RMS error than Experiment 2.1c.

The maximum percentage RMS error reduction occ.rred at iteration 54 and

oscillated between 79 percent and 84 percent for subsequent iterations

through iteration 300. Therefore, it seems reasonable to establish a

I!
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criterion that is a compromise between increased accuracy and increased

I computational time. We observe that when BADJ changes by less than

10 percent over its previous value of nine iterations earlier, the

I majority of RMS error reduction has already occurred. BADJ changed

* by less than 10 percent at iteration number 45, 64, and 64 for

Experiments 2.1b, 2.2c, and 2.3b, respectively. We conclude that, when

I the method is used in a subsequent chapter to determine X the

criterion for when XB has been determined to sufficient accuracy is when

BADJ changes by less than 10 percent. At that point, a direct solver

will be applied to obtain the velocity potential on the domain interior.
We should also note that the initial X patterns for Experiments 2.1

(a, b, and c) and 2.2 (a through d) are severe tests of the method. An

average v of almost 1 m s- is larger than values normally
'obs

j encountered (WAM; Keyser, 1978).

This method for the determination of XB has several disadvantages:

(1) The method is an iterative technique and hence requires

I more computation time than most noniterative techniques.

However, once the method determines a set of XB values

Iwith the correct low-wavenumber variation, iteration is

no longer required and a direct solver is used to obtain

velocity potential on the domain interior.

(2) Some forcing function fields require more normal derivative

boundary corrections (MAXBDY) than others. This is

especially true if small values of the forcing function

occur near the boundary or if a large range of forcingI
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function values occur over the domain (both conditions

true in Experiments 2.2a through 2.2d). We normally

do not place a boundary in the vicinity of large values

of the forcing function (the meteorologically interesting

I feature). That precaution will help minimize the effect

of this disadvantage.

I To summarize this section, we should first state that for purposes

1 of divergent initialization, the methods which have been used previously

may be unacceptable because they do not accurately specify the low-

wavenumber variation in XE. We have developed a method to determine

XB in such a way as to insure the correct large-scale XB variation.

i As previously stated, Keyser (1978) demonstrated that if the low-

wavenumber XB variation was correct, then X errors due to X were

insignificant in the domain interior. Therefore, this method for the

determination of XB in conjunction with a direct solver can be used to

obtain an accurate solution of the Poisson equation for velocity

potential on a limited domain.

2.4 Chapter summary

The purpose of this chapter was to establish the divergent

initialization procedure that will be used. Since we will initialize

the PSU model, we stated which forces are considered in the model's

equation of motion.

In the first section, we derived a complete generalized vertical

v
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quasi-geostrophic vertical velocity equation resulted for the synoptic

I scale. We then established the vertical velocity equation appropriate

for the upper meso-B scale. The diabatic term was an important term

in precipitation areas on the synoptic scale but it was even more

important on the upper meso-O scale. In fact, on the upper meso-a

scale, the diabatic term dominated the other forcing functions. Also,

the Coriolis term was significantly less important than on the synoptic

scale.

I In the second section, we derived the complete generalized

divergence equation. The nonlinear balance equation was shown by

scale analysis to be valid on the large scale. The balance equation

required for the upper meso-8 scale was established and presented in

sigma coordinates. On the upper meso-6 scale, the Coriolis term was

not as important as on the synoptic scale. We showed that the neglect

of typical values of the local rate of change of divergence was an

acceptable assumption on the upper meso-8 and larger scales.

In the last section, using theoretical and mathematical tools, we

established what boundary conditions should be usad for stream function,

geopotential, omega, and velocity potential. A new method for the

correct low-wavenumber specification of XB was presented and its

I effectiveness was demonstrated for severe cases. A criterion for the

termination of the method was determined experimentally. This new

application was mathematically equivalent to a Green's function

j solution of the Poisson equation.

I

I
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3.0 THE MESOSCALE MODEL

The PSU model is a general, predictive, hydrostatic, primitive

equation, meteorological model formulated in sigma coordinates. For

g a complete description of the model, see AW and their references.

The model has many options available such as variable terrain, a

moisture cycle, and high- and low-resolution PBL physics. The model

is suitable for forecasting flows with characteristic horizontal

1 wavelengths of about 10-2500 km (meso-y through macro-S scales)

under a variety of meteorological conditions. It is indeed a

versatile tool.

1
3.1 General description of the modelI

The model equations described in AW are in flux form, where the

l vertical coordinate a is defined by (2.27). A Lambert conformal map

projection will be used. There are equations for the u and v velocity

components, a thermodynamic equation, and continuity equations for

mass and water vapor.

For lateral boundary conditions during the model integration,

a linear interpolation in time between the balanced conditions at the

two nearest synoptic times is used. For example, for a 00 GMT

(Greenwich Mean Time) to 06 GMT forecast, the model uses boundary

rvalues on u, v, T, d, and q that are linearly interpolated in time

between the boundary values at 00 GMT and 12 GMT. These "open"
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boundaries allow features to enter the domain at the inflow boundaries

and leave the domain at the outflow boundaries, without significant

reflection of wave energy.

SA staggered grid is employed with u and v defined at points

("dot points") midway between where the other variables are defined

("cross points"; reference Fig. 4). At the lowest sigma level (a - 1),

P,, 4,, and ; are defined while p and ; are specified at the top

(a = 0) sigma level. The dependent variables themselves (u, v, T,

~w, 4, and q) are defined at the forecast leve's whereas at the

intermediate sigma levels, ; and the vertical fluxes of u, v, T, and

q are defined (reference Fig. 5).

The time-differencing scheme used is the pressure-averaging

technique of Brown and Campana (1978). This scheme permits a larger

I time step while meeting the linear stability (Courant-Friedrichs-Lewy

or CFL) criterion for the advection term. However, in preliminary

I forecasts with the model, time splitting (the separation of the odd

time-step solution from the even time-step solution) was a problem.

As a result, Anthes (1978) and McNab (unpublished) incorporated a

I low-pass time smoother (Asselin, 1972; Robert, 1966) into the model.

The subsequent model performance was improved. Unfortunately, because

I of numerical stability considerations, the time smoother requires a

smaller time step.

The model employs both vertical and horizontal diffusion. In the

low-resolution PBL version of the model used here, a simplified

version of Deardorff's (1972) bulk PBL parameterization is used. NoI

1l~
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I[
other levels have vertical diffusion. The horizontal diffusion is

applied to each variable and level and is required for numerical

stability because the model permits nonlinear interactions. The

horizontal diffusion scheme is that used by Smagorinsky et al. (1965)

plus a constant background value for additional smoothing if desired.

Additionally, Warner and McNab (unpublished) added the capability to

enhance the horizontal diffusion near the boundaries. For a variable-

size elliptical area defining the domain interior, the horizontal

1 diffusion is not enhanced. Outside that area, the variable portion

of the diffusion term is multiplied by a coefficient. The value of

that coefficient is one at the edge of the ellipse. For every grid

increment of distance away from the ellipse, the value is increased

by a specified amount (variable name SPONGE). That is, the enhancement

coefficient is equal to SPONGE times the distance in grid units that

the grid point is outside the ellipse. Therefore, the horizontal

I diffusion increases as the boundary is approached. However, the total

value of the horizontal diffusion coefficient is restricted to 40

percent of the maximum allowed by a linear stability analysis.

( The model's moisture and cumulus cloud parameterizations are a

simplified version of Anthes' (1977) scheme.

The PSU model has been tested and verified for a relatively large

number of cases (WAM; Anthes, 1978; Shaginaw, 1979).

I

II
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3.2 Specific model parameters used in this thesis!

The domain chosen is a 30 by 35 grid with a grid increment (.x)

of 120 km. The domain is centered at 41N and 95W and therefore covers

most of the contiguous 48 United States (US). The time step required

for computational stability is 180 s.

The pressure at the top model sigma surface is fixed at 250 mb.

There are six layers between the seven sigma levels of 0.0, 0.25, 0.4,

1 0.55, 0.7, 0.85, and 1.0.

The specific value of the surface drag coefficient, CD, to be

used was difficult to determine. Anthes (1978) reported that the

value of CD consistent with the bulk PBL parameterization should be

between 0.001 and 0.003. Therefore, a value of 0.002 will be used

I here for CD'

The variable enhanced horizontal diffusion scheme was tested for

SPONGE values of 0.0, 1.0, 5.0, 12.5, and 25.0 for a 120-km Ax and the

Jdata set to be described in the next chapter. In the version used

here, the size of the ellipse is such that the ellipse passes within

f 4Ax of the center of each boundary. The value of SPONGE chosen was

5.0. That is, midway between the corner points on any one side ofl
| the grid, the enhancement factor would be 20. The SPONGE value of

5.0 was chosen because it represents a compromise between smoothing

the 2Ax noise that can penetrate the domain from the outflow boundary

( and not noticeably smoothing the large-scale features of interest.
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I
3.3 Static initialization procedure

I
The initialization procedure utilized by WAM in previous

I forecasts will be briefly covered here. Winds were subjectively

analyzed at the 850-, 700-, 500-, 400-, 300-, and 200-mb levels.

Vorticity fields were obtained directly from these wind analyses

Iusing (3.1).

Sv - T u (3.1)
a x m ym

I In (3.1), x and y are the horizontal coordinates of the Lambert

I conformal map projection and m is the map factor. The stream

function was then obtained using

I
2 = (3.2)

given tB' the stream function on the lateral boundaries.

Geopotentials were calculated from the nonlinear balance equation

V2t = fV2 2m2 (pxy - Pxx yy) + 6l y + Yl~x (3.3)

I where I  -yand yI x Of course to solve (3.3), Bis required.

The observed boundary height values were used for B in (3.3).

Finally, temperatures were calculated from the derived geopotentials

through the hydrostatic equation. The nondivergent winds and balanced

-- i
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temperatures were vertically interpolated from the levels at which11

I they were calculated to the model sigma levels.

I
I
I
i

I

I
I

* I
I

!I
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4.0 SYNOPTIC CASE CHOSEN FOR STUDYI
We will use data for two synoptic times. For each time, the

I available data consist of vector winds on the synoptic rawinsonde

network. Shaginaw (1979) subjectively analyzed the data for each of

the six standard upper-level pressure surfaces and for sea level

pressure. He then manually digitized the data for several hundred

points at each level. The data were objectively analyzed with a

ICressman (1959) scan. The data were digitized at enough points so

that the Cressman scan reproduced well the sharp gradients and smaller

features.

IShaginaw (1979) provided a comprehensive discussion of the
synoptic situation for the period 17-21 November, 1975, and that

i discussion will not be repeated here. However, we will briefly

summarize the meteorological conditions at the two synoptic times used

here. Those times are 12191175 and 00201175, where the hhddmmyy format

is broken down in hh = hour, dd - day, mm - month, and yy = year.

For example, 12191175 represents 12 GMT, 19 November 1975.

jA high pressure area (ridge) persisted over the southeastern US

between the times 12191175 and 00201175. This ridge contributed to

I a severe pollution episode at Pittsburgh, PA. The ridge also provided

a continuous supply of low-level moisture from the Gulf of Mexico to

the Great Plains and adjacent states. This moisture supply was a key

factor in the precipitation which occurred between 12191175 and 00201175.

The moisture initialization used was provided by Wolcott (1979). He

_ _ __
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developed a scheme incorporating satellite, surface, and rawinsonde

I data into the relative humidity analysis. The initial relative

humidity fields for sigma levels 3 and 5 are given in Fig. 6. The

satellite picture used for input into the moisture analysis is given

in Fig. 7. It is important to note that the initial moisture field

is saturated over a large portion of the central Plains states and

I the upper Midwest.

14.1 The synoptic situation at 12191175

The observed sea level pressure (SLP) is presented in Fig. 8a. A

I ridge dominates the eastern United States. A trough extends from a

1008-mb low near Big Bend through Minnesota.

The closed low at 500 mb (Fig. 8b) is centered at the "four

corners" region. Although the ridge over the Southeast is weakening,

the height gradient to the south and southeast of the closed low is

increasing. Fig. 8c is the observed 500-mb wind velocity. There are

relative minima associated with the closed low and the ridge over

( the Southeast. Of particular interest is the wind maximum entering

the domain over the California-Mexico border. This wind maximumI
("jet streak") will proceed to move around the south end of the

trough and up the east side resulting in significant precipitation.

Fig. 8d is the observed 500-mb temperature field at 12191175.

[Note that the cold tongue extending southward from Montana reflects

the trough position well.I.

JI a
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Because we will attempt a divergent initialization at 12191175,

we will now present for comparison, the results of the nondivergent

initialization for 12191175 that was performed as outlined in Section

3.3. Fig. 9a is the nondivergent wind speed and direction. The

differences between Figs. 9a and 8c in the vicinity of the trough

are as expected. That is, the wind maximum from southern California

through west Texas and up into the Plains states is not as strong in

the nondivergent case. Also, the horizontal shear over New England

I is not as strong in the nondivergent case.

Fig. 9b is the balanced height field obtained from the non-I
divergent winds of Fig. 9a. When compared with the observed heights

(Fig. 8b), the balanced heights are smoother, the trough is broader,

the height at the center of the closed low is 21 m higher, and the

height gradient southeast of the trough is slightly weaker.

The balanced temperatures are given in Fig. 9c. When compared

with the observed temperatures (Fig. 8d), we note the same kinds of

differences as in the height fields. For the balanced temperatures,

the trough is warmer, the horizontal temperature gradient north of

i New England is weaker, and the ridge over the Southeast is slightly

warmer.

4.2 The synoptic situation at 00201175

[Relatively rapid changes occurred between 12191175 and 00201175.
A low developed over the Texas panhandle and moved as well as deepened

I



I 89

I .\ tA

t I

I 1 -4

I ~ 0 co
Z -,4

.00



1 90

I
I
I
I

I -

I / - 4)J-hCu
I ~ s

I. ~I a - -J 0

I' 1~ CuI -- rJ0

I -, 4)

A
'I,I a)
I*4I' Cu
JJ

- I Cu
4-4 4)

Cu

- (.v ~

I a)j-i Cu
- 0* r~)

~.4aJc.,,-4C'4
dJW 0'.

I *~- I

I o

I
I
I.

I
V

------ *.~- -



91

I
rapidly to a 1004-mb low over eastern Kansas at 00201175 (Fig. 10a).

I The trough now extends from south Texas through the Kansas low and

then through Lake Huron and into New England. The cold air has now

penetrated into the northern Rocky Mountain states and the surface

pressure gradient from Wyoming to Kansas is much stronger than 12 hours

before.

From the observed height field in Fig. lOb, we see the closed

low has moved eastward to southwest Kansas at a speed of about

17 m s- . The height of the low center fell about 40 m. The height

gradient to the southeast of the trough has strengthened. This is

reflected in the wind speeds and directions in Fig. lOc. The wind

maximum previously over southern California has increased nearly

12 m s while moving around the southern end of the trough and is

now centered over Abilene, Texas. Precipitation occurred on the cold

side and ahead of this jet streak. Also note that the wind maximum

I north of Maine has increased in intensity. The position of this

maximum was probably responsible for thL precipitation which occurred

in the western Great Lakes region.

The temperature field (Fig. lOd) shows an increased temperature

gradient to the south and southeast of the trough with the cold air

advancing over Kansas and Oklahoma while the relatively warm air still

resides over the Midwest.

!

i|I
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4.3 The observed precipitation amounts

I
Precipitation data for the period 12191175 to 00201175 were

I extracted from the National Climatic Center's November, 1975,

Hourly Precipitation Data (Volume 25, Number 11) booklets for each

state. For each hour, the data were analyzed at grid points using a

I Cressman (1959) scan with a radius of influence of 1.0.

The total precipitation for the first three hours (12 GMT to

15 GMT, 19 November 1975) is given in Fig. lla and t. - total

precipitation for the 12-hour period is given in Fig. llb. We

Iobserve that the heaviest 12-hour precipitation (just over 2.5 cm)
occurred from south central Nebraska to northwestern Kansas.

I
I
I
I
I
I
I
I
I
I
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5.0 USE OF THE OMEGA EQUATION IN THE DETERMINATION OF THE DIVERGENT

WIND COMPONENT

I The first objective of this chapter is to review previous work

on the use of the omega equation to diagnose vertical velocities.

Then we will derive the finite-difference (FD) version of (2.23), the

l gmesoscale omega equation. The FD omega equation will then be applied

to the 12191175 data described in Chapter 4. Experiments will be

I performed to confirm the validity of the relative order of magnitude

of the terms in (2.23). Finally, sensitivity experiments will be

conducted which will provide information on how accurately the

divergent wind component can be determined.

1 5.1 Previous diagnostic studies using the omega equation

lI The omega equation equivalent to that of Krishnamurti (1968a)

can be written:

2(a W) + f2  V .VV + f VX.V

3p2 fp s-

Tl T2 T3 T4
III IIIIIII

T5 T6 T7 T8

I
1,, 11,1

(51
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I c Q p aR a+ ' p-C-- g

I T9 TI0 TI

IIIII III IIIIII

I (5.1)
2 a a (cont.)

2H 2 - at ap ax ay ap ay atpp

T12 T13 T14

l XIV,X XIIX XIIIX

where H is the sensible heat added per unit time from a water surface.
5

I Note that terms Ti through TII correspond exactly to those of (2.23)

except that Krishnamurti assumes r<<f in T2. Under each term in

j (5.1), the first Roman numeral is the order of magnitude of that

term from the scale analysis of Chapter 2 (X indicates not given).

l Krishnamurti found that T12 was small except over large water bodies

and hence T12 will not be discussed here. Terms T13 and T14 cor-

respond to terms T13 and T14, respectively, of (2.19), and were assumed

to cancel in (2.23) by virtue of the geostrophic vorticity assumption.

Krishnamurti (1968b) applied (5.1) on a 2.5-degree latitude

j by 2.0-degree longitude grid for four synoptic times covering the

development of a cyclone in mid-latitudes. To examine the magnitude

of omega, he chose eight points in the vicinity of a 500-mb trough

at one of the four synoptic times. First, the omega values at the

eight points were computed and then averaged. From this average

value, the relative order of importance to the total omega of each

term is given as the second Roman numeral under each forcing function

in (5.1). We note that the relative importance of each term found

II

_ __ __ _ __
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by Krishnamurti is exactly that determined by the scale analysis

for synoptic scales (Krishnamurti's average grid increment was about

200 km). He also pointed out that T8 and T9 tend to cancel and, to

I a lesser extent, so do T4 and T6. The largest vertical velocity

found at any point was at a point where the latent heating con-

I tribution was the largest.

i Baumhefner (1968) used Krishnamurti's (1968a) diagnostic model

in the tropics on a 2.0-degree latitude by 2.0-degree longitude grid.

IHe studied an easterly wave spanning four synoptic times in August,

1961. The third set of Roman numerals under the terms on the RHS

of (5.1) were Baumhefner's results at the 500-mb level. We see that

terms T4, T6, T8, T9, and T13 were found to be an order of magnitude

smaller than Krishnamurti's results.

Hawkins (1972) developed a diagnostic model for computing omega

which he applied to three disparate cases on a 206-km grid mesh.

He reported that the omega values obtained from the complete,

relatively sophisticated model were similar to the first-guess

Ivalues diagnosed with the quasi-geostrophic omega equation with the
I latent-heating term added. That is, Hawkins' findings agreed with

the other researchers.

IIn summary, we conclude that previous research supported the

scale analysis used in Section 2.1 in the determination of the omega

equation appropriate on the synoptic scale. When the FD form of the

mesoscale omega equation is applied to the 12191175 data, we expect

the relative importance of the terms will be the same as that

indicated by the scale analysis for the mesoscale.

t I
_ __ ____ __
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I
5.2 Derivation of the finite-difference (FD) form of the omega

I equation

fBefore we can present or discuss FD equations, we need to define

some FD operations. We use Shuman and Hovermale's (1968) notation

I for the FD operators

ax - (,j+4- i,J- )/Ax (5.2a)

a (+ ,j - ni_ j )/Ay (5.2b)

(a + cl j+ /i 2  (5.2c)

I E - (ci+ ,j + ci_,( )/2 (5.2d)

f where j is the east-west index and i is the north-south index.

We will use the "four-point" operators

;Y=- (ai+l,j + 2oi,j + ai-l,j )/4  (5.3a)

0 (i,j+l + 2a i,J + Li,j-l ) 4  (5.3b)

Vertical differences and averages are defined by

a (CkA + ck_ )/ 2  (5.4a)

6a k+ a  ak ) (5.4b)

Ik+ kI

-~~~- IT-~ - _ _
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Omega will be calculated on a 30 by 35 by 7 grid. Each 30 by

I 35 horizontal section has a grid increment of 120 km and is centered

at 41N and 95W. Fig. 12 illustrates the vertical structure of the

omega equation domain. Note that velocity, temperature, omega, and

static stability are defined at standard constant-pressure levels

Iwhile the forcing functions for the three-dimensional relaxation are
defined at the mid-levels.

Because the derivation of the FD form of the omega equation is

long and detailed, it is presented in Appendix 1.

5.3 Application of the FD omega equation to the 12191175 data

In this section we will use the FD omega equation to compute

omega values for the 12191175 data set. We will first examine the

diabatic term. Then we will try to determine to what accuracy the

vertical velocities can be determined.

1 5.3.1 The diabatic term and the parabolic omega profile

As described in Appendix 1, we use a parabolic omega profile

*and the observed rain rate to calculate omega values due to the

diabatic term only. Hereafter, these omega values will be termed

Iconvective omegas.
Since precipitation amounts were measured hourly at synoptic

stations, and since a rainfall rate valid at 12191175 was desired,

F rainfall amounts from 2 hours before and 2 hours after 12191175 were

averaged to obtain a more representative rainfall rate. Fig. 13 presents

that precipitation rate in cm d

i i
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ILevel Pressure Input Der ived
(mb) Data quantities

I 1 200 V TI(~F
I V,2 W1C.

2 300 Yw 3 T

22 2 - - - m Fit
3 312400 13 T3  W3 %3

4 500 4 T4 W4 4%

700 V T5  W 5 0

61/2 80m ~ mmm0

1 7 1000 X

Fig. 12. Vertical structure of grid used to calculate the omega
field. The forcing functions F are calculated at half
levels and omega is obtained at the standard pressure
levels.
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We should mention here that observed precipitation rates, the

input data for the omega equation diabatic term, can be obtained from

other than rainguage measurements. For the eastern US, rain rates

I can be obtained from NWS manually digitized radar (MDR) data (Moore

et al., 1974). Over the oceans, meteorological satellites have

provided precipitation rate observations (Adler and Rodgers, 1977). A

scanning microwave radiometer on the satellite measures a "brightness"

temperature. The dominating factor in the determination of this

temperature over water is liquid water drops of rainfall size. The

brightness temperatures are then translated into rainfall rates using

previously derived rainfall rate-brightness temperature relationships.

In the future, satellites may also provide rainfall rates over land.

Therefore, satellites provide a means of obtaining data required for

the diabatic term.

We will use the rainfall rate in Fig. 13 in the solution of the

J finite-difference form of the omega equation. Before solving the

entire equation, we will conduct four experiments to determine

convective omegas. The purpose of these experiments is to determine

the effect of uncertainty in the observed rainfall rate and the effect

of including a terrain-induced omega as the lower boundary condition

for the parabolic omega profile.

Table 5 gives a summary of the convective omega experiments. The

column labeled "RAMT" is the fraction of the rainfall amount of Fig. 13

that was used for that particular experiment. Fig. 14 is the 500-mb

convective omega field for Experiment 5.1. The purpose of Experiments

5.1 through 5.3 was to determine if there exists a significant

variability in the omega values calculated for the computational domain

________
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at 500 mb when the precipitation rate was altered. Since precipitation

I amounts over large areas are determined by very few observations in

time and space, the precipitation amounts themselves at grid points

possess a sizable uncertainty. This uncertainty is largest in

areas of strong convective activity. A 25 percent difference between

Ithe "observed" precipitation amount and the precipitation amount

that would be representative of a grid square can easily be imagined.

For a 25 percent error in precipitation rate (represented by

f Experiment 5.3), there was approximately a 20 percent error in the

500-mb RMS omega value over the entire domain. Therefore, the signi-

I ficance of the diabatic term was critically dependent on the accuracy

of the rainfall amounts themselves. Experiment 5.4 demonstrated that

when terrain-induced omega values were not used as the lower boundary

condition, there was only a small effect at 500 mb but there was a

significant effect at 850 mb. We conclude that the terrain effect

did indeed produce significantly different omegas in the lower levels.

Terrain-induced omegas should be used since they are consistent with

Ithe forecast model which contains variable terrain.

5.3.2 Experiments with various terms in the FD omega equation

Experiment 5.5 consisted of obtaining omega values using the

finite-difference version of (2.23), the mesoscale omega equation.

The resultant 500-mb omega values are presented in Fig. 15. From

the figure we can see the strong influence of the diabatic term over

eastern Colorado, the Texas panhandle to southwestern Nebraska, and

over Lake Superior and vicinity.
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Several experiments were performed to support the scale analysis

1 used in obtaining (2.23). For example, experiments were completed

with the quasi-geostrophic omega equation, with differential vorticity

Iadvection only, and with the Laplacian of temperature advection only.
From these experiments the following conclusions were reached:

(1) The omega equation experiment without a diabatic term

f greatly underestimated the omega values in the precipitation

areas. In fact, the diabatic term was the largest single

term in the areas of precipitation. Therefore, a

diabatic term must be included on the mesoscale.

(2) The quasi-geostrophic omega equation with a diabatic

term overestimated the omega values in the precipitation

areas.

(3) An experiment with random uncertainty in the wind field

produced only small RMS changes in the omega values.

(4) The scale analysis in Section 2.1.4 was supported. That

f is, the various forcing functions had the expected relative

influence on the omega values. Therefore, (2.23) is an

appropriate form of the omega equation for the mesoscale.

(5) An experiment was conducted in which the precipitation

rate used for the diabatic term was 25 percent less than

that for Experiment 5.5. At 500 mb, the RMS differenceIt
between this experiment and Experiment 5.5 was 15 percent

of the mean absolute value of omega for the entire field.

At 600 mb, this produced a 10 and 15 percent RMS

Idifference in u and v, respectively. That is, with a
X ,

reasonable estimate of the uncertainty inherent in' I
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I precipitation observations, the percentage change in the

I divergent wind components was almost as large.

g The omega values used to determine the divergent wind component

were those from Experiment 5.5. Then, to obtain velocity potential,

1the method described in Section 2.3.4 was applied with the boundary

normal derivative adjusted for 100 iterations. The resultant

Idive~gent wind fields for the 925-, 775-, 350-, and 250-mb levels

are given in Fig. 16. In Fig. 16a, there is a narrow zone of con-

vergence from central Wisconsin to southwestern Kansas and on toward

I the south. This same pattern is evident at the 775-mb level (Fig.

16b). The low-level convergence is supported by the divergence aloft

depicted in Figs. 16c and 16d. The zone of divergence extends from

Lake Superior to western Kansas and to the south. The divergent

I wind fields appear to be vertically consistent. In Chapter 7, we

gwill see if the region of maximum vertical motion is reflected in the

forecast started from a divergent initialization.

JIn the next chapter, the FD form of the balance equation which

will be used in the divergent initialization will be derived.

I
I
I

I

a



108

7I'd 
Lii///'

JA ca 
, //

I'r=
- ~**'-'

p.r



1 109

I .~.%SV~14-

t

OD.A 1//



110I
6.0 DERIVATION OF THE FINITE-DIFFERENCE (FD) BALANCE EQUATION

1
The purpose of this chapter is to derive the FD form of the

balance equation to be used for the divergent initialization of the

PSU model. The balance equation in sigma coordinates appropriate

Ifor this purpose is given by (2.31).
I At this point we will examine how balance equations in general

have been used in the initialization of numerical models. The common

I practice, especially on the large scale, has been to use observed

geopotentials and solve the balance equation for stream function.

I For example, this procedure was used by Sundqvist (1975). There

1 are, however, at least two reasons why an alternative approach should

be employed.

IFirst, Paegle and Paegle (1976) reported that, for the year

beginning 1 June 1969, virtually every Northern Hemisphere 200-mb

I chart exhibited nonelliptic geopotential data at some points. The

nonelliptic geopotentials were especially prevalent in the summer

above severe weather events. The balance equation was not solvable

( in regions where the geopotentials are nonelliptic and some approxi-

mation must be made there.

Second, WAM, Fankhauser (1974), and AW have pointed out that

typical errors in surface pressure and rawinsonde temperatures led

to large errors in the horizontal gradients of geopotential heights

on the mesoscale (10-100 km). Fankhauser reported that errors in

Iheight observations of more than 30 m were common on the mesoscale.
Therefore, we will follow WAM and supply the nondivergent wind to the

( 2!

I i
]A

L_ _ _ _ __ _ _ _
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balance equation and solve for geopotential. We now proceed to the

derivation of the FD balance equation.

One possible approach for the FD form of the balance equation

would be to write each term of (2.31) directly in its FD form.

Although that approach is conceptually simple and relatively easy

to do, it will not be used here. One objective of any balancing

scheme should be to retain the maximum degree of consistency with

the model being initialized. This should help minimize noise generated

during the adjustment phase of the prediction. That is, the more

consistency between the initialization scheme and the model, the

nearer the balanced initial conditions are to those conditions

exactly compatible with the model. Therefore, we will derive the FD

form of the balance equation directly from the model FD equations

I themselves. In this chapter, we will present the PSU model FD

equations, derive the consistent FD balance equation, and outline how

the equation should be used in the initialization procedure.

1 6.1 The PSU model FD equations

AW provide the complete set of the FD model equations, and

most will not be repeated here. We present only those which are

essential to this chapter.

The finite-difference equations associated with the u and v

component equations of motion (minus those terms which do not

I correspond to a term in (2.28)) are:

r

. .. .. _ V
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1 =~2K~x* + - 6(a p~u)
m x m y 60

ITi T2 T3

(6.1)

mRfxy YY

M-xy -xy + x +f~

T4 T5 T6

2 0=y P*VX - (a P~
m x m y 6

T7 T8 T9

(6.2)

--- x -- x -

-mp* f*

1+

T10O1 T12

Iwhere the terms p~u and p~ represent up*-X and VP respectively.

The FD form of the continuity equation is

-x
(m Y)~- I + my(6.3)(- X (MY6

The FD equation relating omega and a is

ap* y--x-Y
u* + -;t * xy T) (6.4)

x y
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Finally, the hydrostatic equation is

I _ __-_R (6.5)
31n(a + Pt/p)

6.2 Derivation of the FD balance equation for the PSU model

I We know that a divergence equation can be formed from the u and

v equations of motion by operating on the u equation with and on

I the v equation with -L and summing the result. To form the FD
ay

I balance equation, the procedure must be slightly modified. In the

p~u and pv component equations, each individual term is defined

1 at a dot point because p~u and p~v are defined at dot points. However,

we will use the balance equation to solve for geopotential and on the

staggered grid, geopotential is defined at cross points. Therefore,

i in deriving the balance equation, we must make a modification such

that the terms are defined at cross points rather than dot points.

The result of differentiation of T1 in (6.1) with respect to x

is Tl in FD notation. However, the resultant derivative applies
x

midway between dot points. In order for the derivative to apply at

the desired cross point, T1 must first be averaged in the y direction

(FD operation TI). For TI at point (i,j), the result of (Tl') appliesxI
at cross point (i+ ,J+ ) as desired, where integer values of i and j

refer to dot points. To summarize, the desired balance equation is

I derived by first dividing (6.1) and (6.2) by mp,. Eqs. (5.2d) and

then (5.2a) are applied to (6.1) and that result is added to the

result of applying (5.2c) and then (5.2b) to (6.2). Transposing the

I
I
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I terms containing geopotential to the LHS of the equation yields

equation (6.6), the complete FD balance equation.

T1 T2 T3

I;X I ~ -y m Y
T4 T5

T6 T7

66 - v RTnp

6a p yv _______

M TXY 6o yy (1j+ t -l

IT8 T9

-y +

T10 T11 T12
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I For a nondivergent initialization on sigma surfaces, the u and v

I appearing in terms T3 through T6 represent the nondivergent wind

components u, and v., respectively. For a divergent initialization

on sigma surfaces, terms T3 through T6 are each applied three

because the u and v in those terms represent the total wind com, "-erts.

I That is,

I u u + U (6.7a)
X

IIand

v v + v (6.7b)
X

For example, if we use functional notation to express T3 as a function

of u and p~u, then we can write T3 asI
T3 - f(u,p*u) (6.8)

Substitution of (6.7a) into (6.8) produces

[ T3 - f(u,,P*u) + f(u ,p*uX) + f(U ,p*u,)

(6.9)
I + f(UxPU )  •( x x

The fourth term in (6.9) is neglected because the scale analysis of

I Chapter 2 indicates that it is two orders of magnitude smaller than

the first term. The three applications of T3 required by divergentI

I-
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initialization on sigma surfaces are represented by the first three

terms of (6.9). We write these terms as

T31 - f(u,P*u,)

T32 = f(u,,pu x

I
T33 = f(u ,puI

Similarly, for terms T4 through T6, we can write

Ia
T41 f(u,,p~vIt

T42 = f(u,,p*v )

I
I
I

T62 = f(v,,pvI
T63 = f(v ,PV

It is important to realize that the "nondivergent" or "divergent"

velocity components refer to pressure surfaces even though the model

is formulated on sigma surfaces. We calculate the velocity components

on pressure surfaces and interpolate them to sigma surfaces. We do

S- . -
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not compute X or p on sigma surfaces. Thus in the "nendivergent"

initialization, V "V 0 but V -V does not equal zero because of the

slope of sigma surfaces over variable terrain.

Performing the above FD operations on the terms of (6.6) is a

long, complex, and tedious enterprise and is therefore presented in

IAppendix 2.
I

6.3 Application of the FD balance equation

I
To apply (6.6), we need a at a levels and cross points, T at

I half-sigma levels and cross points, and u,, u, v v, m, and f at

half-sigma levels and dot points.

The available data consist of surface observations and observations

on constant-pressure surfaces. Therefore, the data will be inter-

polated to sigma surfaces before applying (6.6). This will provide

T at half-sigma levels. We obtain u and v at half-sigma levels byx x

interpolating the divergent components computed in Chapter 5 from

constant pressure to sigma levels. We will use the observed u and v

at pressure levels in

V 2 (6.10)I m

I to obtain p at the mandatory pressure levels. The resultant non-

divergent wind components are then interpolated to the half level

sigma surfaces.

To determine ;, we first calculate a from a finite-difference

form of the vertical integral of mass divergence. Then, for each

I layer, we apply

I i __
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an*__ x _Y C + a -a* T + I y - y k+l + V. (6.11)Ik+l 0k +x u+ --p, p ,

I to obtain a at the full intermediate sigma levels. By definition,

is zero at the top and bottom sigma levels. We have now defined

I all of the quantities necessary to use (6.6).

1Once geopotentials have been obtained at all the half-sigma

levels, (6.5) is used to obtain the balanced temperatures. The

f geopotential at the ground is known from the terrain elevation.

The balanced temperatures are then interpolated to the half-sigma

i levels and the initialization process is completed.

i
I
I
i
I

I
!
I
I
I

-
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7.0 DIVERGENT INITIALIZATION APPLIED TO A REAL DATA CASEI
The purpose of this chapter is to discuss in detail, five 12-hour

forecasts, all of which began at 12191175. Forecast 1 is initialized

with unbalanced data. The observed winds and temperatures are

interpolated from pressure to sigma surfaces and are inserted into

the model with no other processing. Forecast 2 is initialized with

unbalanced data but differs from Forecast 1 in that the winds are

nondivergent. The nondivergent winds and observed temperatures are

interpolated from pressure to sigma surfaces. Forecast 3 is initialized

by the nondivergent balance method described in Chapter 3. That is,

geopotentials are calculated on pressure surfaces via the balance

equation, temperatures are derived'hydrostatically, and these

temperatures are interpolated to sigma surfaces. Forecast 4 follows

a nondivergent initialization on sigma surfaces. Geopotentials are

calculated on sigma surfaces using only the nondivergent wind.

Balanced temperatures are derived and interpolated to sigma surfaces.

Forecast 5 follows a divergent initialization on sigma surfaces. It

is similar to Forecast 4 except that the terms in the balance

equation containing the divergent wind components are also used and

the divergent wind component obtained in Chapter 5 is added to the

nondivergent wind to obtain the total wind field. Forecasts I and 2

are considered control experiments because they are unbalanced.

fForecasts 3, 4, and 5 are balanced in different ways. Figs. 17

through 20 are flow charts illustrating how the various initializations

proceed. Fig. 17 shows how the nondivergent wind components are

4

- __ ____ ____ ____
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I
calculated on sigma surfaces. Fig. 18 illustrates how the divergent

I wind components are obtained on sigma surfaces. In Fig. 19, we show

how o is calculated. Finally, in Fig. 20, we graphically compare

the different initialization procedures. Although we are interested

in all aspects of the results of the experiments, we will be primarily

concerned with the initial precipitation amounts.

I
7.1 Initial conditionsI

In the three forecast experiments that were balanced (Forecasts 3,

4, and 5), a superadiabatic lapse rate occurred over much of the

I surface low pressure system (the eastern Rockies and the Plains

states). In each initialization, geopotential is defined at the

9 surface (sigma level 7). In Forecast 3, geopotential is calculated

at 850 mb while in Forecasts 4 and 5, geopotential is calculated at

sigma level 6 . Temperatures are then computed for the bottom layer

jfrom the hydrostatic equation. In each case, the lowest layer is

about 500 m thick. One explanation for the superadiabatic lapse

rates is the procedure used for the diagnosis of surface pressure.

The initialization procedure uses temperature to diagnose surface

I pressure from sea level pressure in an iterative process using the

hydrostatic equation. The sea level pressure observation was

originally obtained from observed station pressure using the standard

Iatmospheric lapse rate. Consequently, if the actual lapse rate is

warmer (or colder) than the standard atmospheric lapse rate, the

I
l4

Ii
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diagnosed surface pressure will be higher (or lower) than the observed

surface pressure. In this case, the surface pressure was under-

estimated in the vicinity of the low since the atmosphere was colder

than the standard atmospheric lapse rate would predict for the 850 mb

I to surface layer.

Now we can examine typical errors in the temperature at the

bottom level that could result if p or the geopotential at the lowest

calculation level are in error. The finite-difference hydrostatic

Iequation for Pt = 0 can be written:
I _

'6  - 7
= - RT (7.1)

I IP 7

i where T applies at the logarithmic mean pressure of P7 and P6 ' and

the subscripts 6 and 7 refer to sigma levels 6 and 7, respectively.

For p7 = 1000 mb, a 10 m change in the geopotential at level 6

results In a two-degree change in the mean temperature of the layer.

A 3-mb error in p 7 (p s) results in a one-degree change in the mean

temperature. Keyser (1978) reported that for a 925-mb height error

of 10 m, the corresponding error in temperature for the 925-mb to
i

surface layer is 3.8'C for SLP - 1013 mb and 4.4'C for SLP - 1000 mb.

Keyser (personal communication) reported the occurrence of super-

adiabatic lapse rates (and not just in the lowest layer) in cases

Sreported by Keyser (1978) and Anthes (1978). Barker* (personal

communication) reported that areas with a superadiabatic lapse rate

in the lowest layer occurred after balancing the initial conditions

IE. H. Barker, 1978, Naval Environmental Prediction Research Facility,
Monterey, California.
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for a global synoptic-scale primitive equation model. Hence, for thin

i layers especially, the hydrostatic equation is very sensitive to small

errors in geopotential or surface pressure.

The atmosphere would not be expected to have a superadiabatic

i lapse rate over any large area. Hence the forecast model should not

be provided with these erroneous lapse rates. Keyser and Barker

I (personal communication) recommended using a convective adjustment

procedure at the end of the initialization. Although the balancing

I would be somewhat altered, the result is more realistic. Also, the

Ipresence of superadiabatic layers would artificially increase the
initial precipitation rate. The convective adjustment procedure

selected for use here is analogous to the one described by AW. Their

scheme conserved the vertical integral of internal and potential

I energy.

The initial mean values of wind and temperature are given in

Table 6. The temperatures for Forecasts 3, 4, and 5 apply after the

1convective adjustment was performed. The temperature changes produced

by the convective adjustment procedure were several degrees at levels

1 5 and 6 and one degree at levels 1 and 2 .

Barker (personal communication) found that the number of

occurrences of superadiabatic lapse rates dropped dramatically when

a new three-dimensional analysis procedure was applied to the raw

data before balancing. The three-dimensional analysis scheme replaced

[ a more conventional two-dimensional system. The analysis used on

the 12191175 data was a two-dimensional analysis. This suggests that

i
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Table 6. Mean values of the initial temperature and

wind fields for Forecasts I through 5.

IForecast
Number 1 2 3 4

ITemperature (K)
Sigma level

I 1 234.1 234.1 235.0 235.0 235.0

2 254.1 254.1 252.6 255.1 255.0

1 3 262.9 262.9 261.3 263.4 263.3

4 268.7 268.7 268.8 268.1 268.0

5 274.1 274.1 274.3 274.3 274.3

6 279.7 279.7 280.2 277.5 277.7 5

u component (m s- )
Sigma level

1 23.1 23.1 23.1 23.1 23.1

2 15.8 15.9 15.9 15.9 15.7

3 12.2 12.2 12.2 12.2 12.1

4 9.82 9.84 9.84 9.84 9.75

5 7.65 7.67 7.67 7.67 7.54

6 4.10 4.12 4.12 4.12 4.10

v component (m s - )
Sigma level

1 8.20 8.21 8.21 8.21 8.44

2 7.20 7.18 7.18 7.18 7.27

3 7.17 7.17 7.17 7.17 7.18

I 4 7.58 7.59 7.59 7.59 7.58

5 8.20 8.19 8.19 8.19 8.19

[ 6 8.66 8.65 8.65 8.65 8.72

I
I
LI _ _ _
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an analysis procedure with some vertical consistency constraint should

I be used in the initialization of the PSU model to help eliminate

geopotential errors.

The same surface pressure field was used in all five experiments.

Because the temperature field at the lowest level is different for the

unbalanced experiments and each balanced experiment, the initial sea

i level pressure fields are slightly different. Fig. 21a is the sea

level pressure field for Forecast 5. Fig. 21b is the balanced 500-mb

temperature field and Fig. 21c is the 500-mb height field for

Forecast 5. The lowest height in the trough over the Rocky Mountains

is 15 m less than in Forecast 3. Fig. 21d is the initial 500-mb wind

field for Forecast 5. The nondivergent wind fields for Forecasts 2,

3, and 4 are identical.

I One method of comparison of the initializations involves the

computation of MS temperature difference between them. The RMS

temperature differences between the initial conditions of the

experiments are presented in Table 7. The values are not unusual

except for the level 6 differences between the balanced experiments

and the unbalanced experiments. An examination of the temperature

difference field between Forecasts 1 and 5 reveals temperature

differences of up to 10C in the ridge over the southeastern United

States at level 6 . In Forecasts 4 and 5, geopotentials were

calculated on sigma surfaces and the height of the level 6 sigma

Fsurface is as much as 35 m lower than the same sigma surface for

Forecasts I and 3. This height difference is due to the mesoscale

[sigma-surface balance equation used for Forecasts 4 and 5. The 35-m

f,[
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height difference changes the depth of the layer between sigma levels

6 and 7 from about 470 m to about 440 m. This represents a 6 percent

change in thickness and corresponds to a 6 percent reduction in the

I mean temperature of the lowest layer of about 20'C. This mean

temperature applies at about sigma level 6 3/4. When the mean

temperature is used to obtain the temperature at sigma level 6 , the

1 resultant level 6 temperature is up to 10'C lower than the unbalanced

forecasts. We will see that this erroneous temperature difference

I adversely affects the RMS temperature errors at the lower levels.

The geopotential errors in the vicinity of the high are an additional

Iindication that an analysis procedure with some vertical constraint
Ishould be used in the initialization of the PSU model. That is,

for a thin layer, a relatively small change in geopotential can make

a relatively large change in the mean temperature of the layer.

I 7.2 The model forecasts

In this section the forecast results will be compared and

Icontrasted with the exception of the precipitation predictions, which

will be discussed in Section 7.3. For each forecast, noise

characteristics and the 12-hour forecasts of sea level pressure, 4

temperature, and wind will be discussed.

I
I
I
I

1| ___ __
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I
7.2.1 Gravity-inertia wave characteristics of the forecasts

Gravity-inertia waves in a forecast are sometimes referred to

I as "noise". As pointed out in Chapter 1, these waves can destroy

the meteorological portion of a forecast if care is not exercised

during the initialization and the forecast itself. However, gravity

Jwaves, particularly internal gravity waves, are responsible for the
geostrophic adjustment process. Noise is perhaps an unfortunate

choice of words as it implies that all gravity waves or vertical

motions are undesirable. The undesirable vertical motions arise

Iprincipally from the time-dependent boundary conditions and aliasing
and are generally of smaller scale than the meteorologically significant

vertical motions. Th6 undesirable vertical motions are minimized with

the enhanced horizontal diffusion scheme.

Most investigators have previously used a time series of the

vertically integrated mass divergence as an indicator of noise. That

Dp, 2ap,
is, 13t-I or 1-- --I have been used. Sundqvist (1975) plotted t jI

summed over the domain versus time. His curves showed an increase for

the first two hours after initialization and then displayed a gradual

decline. -,

I Bleck (1977) preferred to use - He stated that gravity
at2

waves appeared most clearly in the term of the divergence

equation and, therefore, I-i should be used to indicate external

at 2 paD
gravity-wave noise. Since . is related to - dp by the

at2  fPsa

continuity equation, Bleck used - as a measure of general

7 P at 2
noisiness. Bleck's plots of I showed a sharp decline in general

at

I 2q
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noisiness for the first three hours followed by a gradual decline. His

initial conditions were unbalanced so we should expect a high initial
a2p,

noise level. Bleck's model with terrain produced a value for -.--I of
-7 -2 at

about 5 x 10- mb s- at the end of a 12-hour forecast on an 85-km mesh.

WAN reported and 1 * for the PSU model applied to another

data set. A time smoother has since been incorporated into the PSU

model and the noise characteristics should now be somewhat different

than those in WAM. Anthes (1978) used a version of the model employed

here, on a 60-km grid mesh and another data set. He reported mean

values of about 5 x 10- mb s-l and 5 x 10- mb s for I and

-P, respectively, at the end of the first 12 h of a 24-hourt2

forecast. 

2p*
Figs. 22 and 23 are the plots of and -at , respectively,

j versus time for Forecasts I through 5. In Fig. 22, the curves increase

slightly for about an hour and then decrease slowly through the rest

of the forecast period. Forecasts 1 and 2 have similar I plots

and are not significantly different in this respect. Likewise,

Forecasts 3, 4, and 5 have similar graphs. The forecasts started

from balanced initial conditions (Forecasts 3, 4, and 5) do indicate

a lower noise level as measured by 1-I- than the unbalanced

experiments, 1 and 2. In Fig. 23, the plots decrease rapidly for

three hours and then decrease more slowly for the rest of the forecast.

The forecasts with unbalanced initial conditions again possess a higher

noise level than the balanced experiments. Forecast I has a

significantly higher noise level. As in Fig. 22, Forecasts 3, 4, and

5 are not substantially different. For Forecast 5, this implies that

Ii
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the added divergence does not generate significant additional noise

in the forecast. That is, very little of the divergence is partitioned

into gravity-inertia wave noise. In both Figs. 22 and 23, we detect

1 no difference in noise level for the balanced experiments.

The results in Figs. 22 and 23 are similar to those of Bleck

(1977) and Anthes (1978). Bleck's value of for unbalanced
at 

2

initial conditions at 12 h was the same as that in Fig. 23 for Forecast

1. Anthes reported slightly higher values of - and -- at the
t- at2

end of 12 h than for the balanced experiments in Figs. 22 and 23,

respectively. This was probably due to his use of a 60-km grid mesh,

compared to the 120-km mesh used here. In another forecast experiment

not reported on here, the parameter which controls the strength of

the enhanced horizontal diffusion was increased by a factor of five.

Although the precipitation amounts on the domain interior were not
IP,

affected, the noise level as measured by J -t-I was reduced by about a

I factor of three. Hence the temporal variation of surface pressure

depends to some degree on the horizontal diffusion employed near the

boundaries. This fact alone could account for the slight differences

between the noise statistics reported by Bleck and Anthes and those

reported here.

Sundqvist (1975) reported a significant reduction of noise level

when the mass and momentum variables were balanced on sigma surfaces

for a synoptic-scale model. He also reported a higher noise level

for sigma-surface balancing when mountains were used as the lower

boundary. The terrain field used by Sundqvist was smoothed such that

4Ax and shorter wavelengths were removed. No smoothing was applied

- _ _ ----- _ _ _ I II
-

-
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to the terrain field used in these experiments. Figs. 22 and 23 show

no noise level reduction for balancing on sigma surfaces. Perhaps

the mesoscale grid mesh, limited domain, and terrain field employed

I did not permit a significant noise reduction for Forecast 4, as

compared to Forecast 3.

0kland (1970) studied a relatively simple two-level baroclinic
aP,

model. He plotted RMS vesus time for nondivergent and divergent

initial conditions (divergent initial conditions consisted simply of

f the model pred tion after 12 hours of integration; that is, the

forecast was started 12 hours previously from different data).
ip,

0kland's RMS -j-t curve was noisier for nondivergent initial conditions.
ap,

As he pointed out, was primarily a measure of external gravity wave

activity. Therefore, the forecast started from nondivergent initial

Iconditions had more external gravity wave activity. Okland also

plotted RMS omega values for a level near 500 mb. He pointed out

Ithat, because internal gravity modes have higher vertical velocities
associated with them than external modes, the RMS omega curve will

reflect primarily the internal gravity waves. The RMS omega curve

given by Okland for the divergent initial conditions was relatively

constant indicating that the internal modes were fully developed and

that the model variables were approximately in balance. In 0kland's

nondivergent case, the RMS omega curve began at zero, reached the

I divergent initial condition omega c'irve in 3 to 4 hours, continued to

rise to a maximum in 6 to 7 hours, and then decreased to a minimum

at 11 to 13 hours.

IA

_ ___ __ I_ I___II
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Here precipitation rates are the primary interest. External

Igravity waves usually have a relatively small effect on precipitation.
Precipitation arises mostly from the slower internal gravity modes.

Therefore, the 500-mb RMS omega graphs versus time will be presented

for Forecasts 3, 4, and 5. Although the previous measures of gravity-

wave intensity (Figs. 22 and 23) were very similar for the three

forecasts, the precipitation amounts, as shall be shown later, are

significantly different. The RMS omega graphs will be related to the

forecast precipitation.

Fig. 24 contains the 500-mb RMS omega plots for Forecasts 3, 4,

and 5 (the plots for 1 and 2 are very similar to 3 and 4). The curve

for 5 begins at a higher RMS omega value and, after 5 hours, reaches

a maximum value lower than that of the nondivergent experiments. A

strong similarity exists between Fig. 24 and 0kland's graph of the

RMS omega. Forecasts 2, 3, and 4 begin with no divergence, As the

I geostrophic adjustment process proceeds and those experiments begin

to develop a divergent component, they actually "overshoot" the

quasi-equilibrium value and develop a larger divergent component than

j Forecast 5 from 4 to 6 hours into the forecast. The 500-mb RMS

omega curve for Forecast 5 indicates the rate of precipitation will

Irise slowly during the first hours of the forecast and then remain

relatively constant.

Forecasts 1 and 2 possess higher noise levels than Forecasts 3,

4, and 5. Forecast 1 is particularly noisy as measured by ---*

It 2
3t

The noise characteristic> of Forecasts 3, 4, and 5 as measured by

II
! 4
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I - 2p

graphs of I and 1- - are not significantly different. That is,
t

no noise reduction resulted by balancing on sigma surfaces. However,

the 500-mb RMS omega curves are significantly different between

Forecast 5 and the nondivergent forecast experiments.

7.2.2 The forecasts of sea level pressure, temperature, and wind

Table 8 contains the RMS errors in the forecasts for sea level

pressure and for temperature and the wind components at 400, 500, and

700 mb. No significant difference in the forecasts can be detected

from these statistics although it is interesting to note that the

unbalanced forecasts (Forecasts 1 and 2) had the lowest RMS temperature

errors. Table 8 also contains the Sl scores for sea level pressure

I for each forecast. The S1 score was developed by Teweles and Wobus

(1954). It is an objective measure of the forecast skill of the sea

Ilevel pressure forecast that is simple to compute and has been
reported often for other models. The S1 score for sea level pressure

relates horizontal differences in the forecast sea level pressure to

the observed differences. The SI score is computed from

12
SE lAPf - APo 0

i=l
Sl= 100 12 (7.2)

Z Gi
i=l

where APf and AP are the differences in forecast and observed sea

level pressure, respectively, and Gi is the maximum of APf and AP0

t0

I
I
I
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for a given pair of points. The differences in sea level pressure

were calculated for all adjacent points in the set of nine points

listed in Table 9, which gives a total of 12 combinations of points.

The "observed" sea level pressure differences were calculated from

f the analysis of sea level pressure given in Fig. 10a. An Sl score

of 20 is considered perfect for practical purposes while a score of

1 70 is nearly worthless.

With a slightly different version of the model used here, Anthes

(1978) reported an average Si score at 12 hours of 33.8 for 32 cases

over the US and Europe. The FNWC hemispheric model achieved an Sl

score at 12 hours of 37.2. These scores demonstrated considerable

skill at 12 hours.

The S1 scores reported here compare well with those of Anthes

and those at FNWC. It is interesting to note that the best S1 scores

here are for the forecasts from unbalanced initial conditions

I (Forecasts 1 and 2). The S1 score of 30.2 for the forecast from

observed initial conditions was significantly better than the other

experiments. One conclusion from Table 8 is that divergent

initialization did not improve the Sl score for sea level pressure

or the RMS errors in the temperature and wind fields.

Okland (1970) obtained an analytic solution for a simple

baroclinic model. From this solution, he concluded that the final

adjusted state is independent of the initial divergence. Therefore,

the RMS errors for the experiments in Table r should not be expected

to be much different. Divergent initializat:ion will, however,

influence the initial precipitation rate.

I
I '1--
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I
Table 9. Indices of the points used in computing S1 scores.

i denotes south-north direction; j denotes west-east
direction. Point (1,1) is the lower left corner.
P is north latitude; X is west longitude.

I
Point i x

1 1 5 10 29.4 104.2

2 5 20 29.5 91.8

i 3 5 30 28.1 79.7

1 4 15 10 40.3 106.0

5 15 20 40.8 91.3

1 6 15 30 39.0 76.7

7 25 10 51.5 108.8

8 25 20 52.1 90.6

i 9 25 30 50.2 72.5

I
I
I
I
I

I i
f

ii
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The sea level pressure forecasts for the experiments are similar.

IFig. 25a is the sea level pressure forecast for Forecast 5. The main

difference between Fig. 25a and the nondivergent experiments is that

the low in the nondivergent forecasts is 1009 mb. The observed

central pressure of the low was 1004 mb (Fig. 10a).

The 500-mb temperature fields for the forecasts are again similar.

I Fig. 25d is the 500-mb temperature field for Forecast 5. None of

the forecasts extended the cold air over the Rocky Mountains far

enough to the south (compare with Fig. lOd). The intensity of the

trough is underforecast.I

Fig. 25b is the 500-mb height forecast for Forecast 5. The

contour pattern is similar to the other forecasts. The lowest height

over Colorado for Forecast 5 was 12 m lower than in Forecast 3. The

observed height was 5472 m over the Colorado-Kansas border (see

Fig. 10b).

Fig. 25c is the 500-mb wind forecast for Forecast 5. The

forecasts are similar. The forecast agrees reasonably well with the

observed wind field (Fig. 10c) with the exception of the wind maximum

Inear El Paso. The forecast only slightly increased the core speed

of the jet and moved the core northward a small distance. However,

the core speed of the jet streak actually increased by 15.4 m s

and the core moved to a point near Dallas. As with the temperature

1and height fields, the wind forecast reflects the fact that the model

did not forecast the rapid intensification of the trough or enough

deepening of the surface low.

- I
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7.3 The precipitation forecastsI
In this section the precipitation forecasts will be compared.

The precipitation forecasts will be viewed in several ways. First the

Iforecasts will be "scored". Then the precipitation amounts themselves

will be examined.

I
7.3.1 Scoring the precipitation forecastsf

Anthes (unpublished) developed an objective procedure for the

"scoring" of precipitation fields. If the forecast precipitation field

is one grid increment displaced from the observed precipitation field,

then the forecast still contains useful information. The objective

Iprocedure that will be used, scores a precipitation forecast in a
quantitative way to determine if a shift in the forecast field with

Irespect to the observed field improves the forecast when compared with
j the observations. The complete objective procedure is presented in

Appendix 3. Therefore, it is discussed only briefly here. A

correlation coefficient is calculated for each shift in position of the

forecast field with respect to the observed field. An example matrix

I of correlation coefficients ck for a shift in each direction of two

grid increments is given in Appendix 3. For example, c0, 0 is the

correlation coefficient for no shift and c1,0 is Lhe correlation

coefficient for a shift one grid increment to the right. Good forecasts

would have a large maximum cZk (1.0 is perfect) and low values for Z

[ and k for the maximum correlation coefficient (0 and 0 are perfect).

I 4
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Figs. 26a, 26b, and 26c contain the correlation coefficient

I matrices for the first three hours of the forecast for Forecasts 3,

4, and 5, respectively (Forecasts 1 and 2 are similar to Forecast 3).

INote that for the nondivergent forecasts (3 and 4), the highest

correlation coefficient is displaced one grid increment from the

center. For Forecast 5, the highest correlation coefficient occurs

with no spatial offset. Also the maximum correlation coefficient

for Forecast 5 (c0 ,0 = 0.75) is higher than the nondivergent forecasts

(c0 1 0.55 for Forecast 3 and c0 1 = 0.66 for Forecast 4). That is,

the forecast experiment started with a divergent initialization

produced the best scores.

j Figs. 27a, 27b, and 27c contain the correlation coefficient

matrices for the entire 12-hour period for Forecasts 3, 4, and 5.

The maximum correlation coefficients for the three forecasts were

0.77, 0.75, and 0.76 for Forecasts 3, 4, and 5, respectively. For

Ithe entire forecast period, all three forecast experiments had the

highest correlation coefficient with no spatial offset of the forecast

and observed precipitation fields. Therefore, the objective procedure

Idetects no differences in the 12-hour precipitation forecasts when
divergence is included in the initial conditions.

7.3.2 The total precipitation amounts and the precipitation rates

[" Fig. 28 contains the total precipitation amounts for each hour

through the forecast period for each experiment as well as the total

( depth of observed precipitation. The amounts were summed for the

;~I
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0.32 0.32 0.40 0.48 0.43

I 0.34 0.35 0.47 0.55 0.50

C = 0.29 0.31 0.47 0.55 0.48

I 0.24 0.24 0.37 0.47 0.44

0.18 0.18 0.33 0.43 0.39I
a. Forecast 3.

I
0.32 0.40 0.51 0.57 0.51

1 0.37 0.45 0.61 0.66 0.57

c 0.36 0.42 0.61 0.66 0.55

0.31 0.35 0.53 0.61 0.50

0.24 0.23 0.45 0.55 0.42

b. Forecast 4.

0.30 0.43 0.59 0.63 0.52

0.35 0.51 0.72 0.74 0.57

I C = 0.36 0.51 0.75 0.74 0.58

0.32 0.46 0.66 0.70 0.54

0.24 0.36 0.56 0.61 0.43

c. Forecast 5.

I Fig. 26. Correlation coefficient matrices from the

objective precipitation scoring procedure
for the first three hours of the forecast.

I
I

I ___ ____ ____

F. __ _ __ _ __ _ _



I
i 149

0.63 0.64 0.64 0.55 0.43

0.67 0.69 0.71 0.62 0.49

I C = 0.68 0.72 0.77 0.69 0.53

0.70 0.76 0.77 0.70 0.53

1 0.62 0.67 0.68 0.61 0.46

a. Forecast 3.

0.66 0.67 0.66 0.55 0.42

0.69 0.70 0.71 0.61 0.48

C - 0.69 0.72 0.75 0.67 0.52

0.70 0.75 0.75 0.67 0.50

0.61 0.66 0.66 0.59 0.43

I b. Forecast 4.

I 0.67 0.67 0.65 0.54 0.41

0.70 0.71 0.71 0.60 0.47

C 0.70 0.73 0.76 0.66 0.51

1 0.72 0.76 0.74 0.66 0.49

0.63 0.67 0.66 0.59 0.42

I c. Forecast 5.

i Fig. 27. Correlation coefficient matrices from the

objective precipitation scoring procedure[ for the entire 12-hour forecast period.

1

I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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entire domain in order to compare the total depth of precipitation

for each forecast with the observed precipitation. Multiplying each

depth by the area of a grid square would yield precipitation volume.

The total amount of precipitation forecast by the model is a useful

Istatistic because the forecasts over the whole domain can be compared.
Similarly, Figs. 29a and 29b present the total precipitation depth

forecast by the convective and nonconvective precipitation parameteriza-

tions, respectively.

For the nondivergent experiments, a slight decrease in the total

precipitation occurs from hour 1 to hour 2 followed by an increase

each hour to the maximum amounts in hours 7, 8, and 9. Then the

j amounts generally decrease for each hour through the end of the

forecast. The behavior of the convective and nonconvective precipitation

follows the same general pattern. However, Forecasts 1 and 2 have

I consistently smaller nonconvective precipitation amounts after hour 3.

In contrast, the total precipitation for the forecast from a divergent

Iinitialization (Forecast 5) is more uniform throughout the forecast

period. The precipitation from Forecast 5 does reach maximum values

Iin hours 7, 8, and 9, and these maximum values are approximately

equal to Forecasts 3 and 4 for those hours. However, the maximum

values are only about 20 percent greater than the first and last

forecast hours. The observed precipitation is about uniform throughout

the forecast period although there is an increase in the last three

hours. Recall the 500-mb RMS omega curves of Fig. 24. The relatively

constant curve for Forecast 5 is reflected in the relatively constant

I
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precipitation amounts for each hour. The greater variability of the

curves for Forecasts 3 and 4 is reflected in the greater variability

in the precipitation amounts by hour for those experiments. Note

that the maxima in the RMS omega curves for Forecasts 3 and 4 occur

at hour 5 while the maxima in their precipitation amounts occur later

in the forecast period. Therefore, the 500-mb RMS omega curves are

I not perfectly correlated with the precipitation amounts. Instead,

it is suggested that a greater variability in the RMS omega curves

implies a greater variability in the rainfall amounts, but that the

1maxima in the two do not necessarily coincide.

The 12-hour precipitation depths summed for every grid point

over the domain for the experiments are 55.2 cm, 50.5 cm, 58.8 cm,

65.6 cm, and 72.9 cm for Forecasts 1 through 5, respectively. Note

that, for the entire period, Forecast 5 produced 32, 44, 24, and 11

1 percent more precipitation than Forecasts 1, 2, 3, and 4, respectively.

However, the 12-hour precipitation total for Forecast 5 is only 58.1

percent of the observed precipitacion total. The 12-hour observed

precipitation is really an approximation because precipitation is

I sampled only at a few points. Also, there is evidence of convective

i activity in Fig. llb (small-scale peaks in precipitation amounts).

A model with a grid increment of 120 km cannot be expected to forecast

small (e.g., 30 km by 30 km) areas of convective activity. For this

reason, the model should not be expected to forecast 100 percent of

1 the observed point values of precipitation, when these values are

not representative of grid-square averages. In spite of this, the

! '
1i
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precipitation forecast for the divergent initialization is a

I significant improvement over the other forecasts.

For all the experiments, the total precipitation for hours 7

through 12 is about the same. Therefore, the difference in the

I 12-hour forecast amoonts is due almost entirely to the first 6 hours

of the forecasts. Additionally, most of the difference in the first

I6 hours occurs in the first 3 of those 6 hours. In the first 3 hours,

Forecast 5 produced 89, 118, 83, and 56 percent more precipitation

than Forecasts 1, 2, 3, and 4, respectively. This precipitation

1increase is directly attributable to the divergent initialization.
When nondivergent initial conditions are used, the model did

Iproduce about the same amount of precipitation in the last half of

the forecast as it did with divergent initial conditions. The non-

I divergent forecasts did not "overshoot". That is, they did not

precipitate more than the divergent forecast later in the 12-hour

period. If the nondivergent forecasts did overshoot, they would begin

to catch up to the total 12-hour amount produced by the divergent

initialization. Therefore, the precipitation lost at the beginning

of a forecast started from a nondivergent initialization is not

recovered.

For Forecast 5, the initial slight increase in the 500-mb RMS

omega curve in Fig. 24 and the more realistic precipitation amounts ,

in the first 4 hours of the forecast are the best indicators that the

model did indeed remember the initial divergence.

f

- -
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The usefulness of divergent initialization is not just the

I additional precipitation in the first 6 hours of the forecast but also

the relatively constant precipitation rate. Although precipitation

does not necessarily occur at an almost constant rate, it did not

occur in the pattern of amounts shown by the nondivergent forecasts

either. That is, the amounts in Fig. 28 for the nondivergent experiments

reflect the anomolous divergence associated with the geostrophic

adjustment process in the model. The divergent component gradually

Ibuilds up, overshoots the balanced state, and then gradually oscillates

about the balanced state. This is the principle cause of the

oscillation in the precipitation amounts for the nondivergent forecasts.

IHowever, in the divergent initialization experiment, the model was
closer to an initial balance between the nondivergent and divergent

components. Hence there is less tendency for the model to reflect

temporal maxima and minima in the mean precipitation amounts that are

as extreme as for the nondivergent forecasts.

The precipitation fields for Forecasts 3, 4, and 5 will now be

compared with each other and with the observed precipitation.

JFigs. 30b, 30c, and 30d are the forecast precipitation amounts for the
first three hours for Forecasts 3, 4, and 5, respectively. Figs. 31b,

31c, and 31d are the forecast precipitation amounts for the 12-hour

forecasts for Forecasts 3, 4, and 5, respectively. Figs. 30a and

31a are the observed precipitation amounts for the first three hours

j and the entire 12-hour period, respectively. There is some evidence

of noise in all the forecast precipitation figures. For example,!
I
I

Ii
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the small area of precipitation in the northwest corner of the domain

Iis due to boundary-generated noise and is not meteorological.

a In comparing Figs. 30b, 30c, and 30d, note that the 0.25-cm

contour in Fig. 30d covers a larger area than in Figs. 30b and 30c.

It is apparent that more precipitation occurred in the first three

hours of the forecast with divergent initial conditions. For the

112-hour forecast precipitation amounts, the 0.25-cm contour in
Figs. 31b, 31c, and 31d covers about the same area. Again, the

Ihighest amounts appear inside the 0.25-cm contour of Fig. 31d.
Since the model did produce an improved precipitation forecast

with the divergent initialization used in Forecast 5, especially in

Ithe first few hours, the initial divergence was "remembered" or

retained by the model. That is, the initial divergence was not

I dissipated by internal gravity waves before it could be supported

by precipitation and the associated release of latent heat. Since

the precipitation occurred in the correct locations, the divergent

j wind fields and consequently the diagnosed omega field were

suff.ciently accurate to be useful in divergent initialization.

[ In order to show that the model did retain the initial divergence,

the initial precipitation rates at several locations will be

I examined. These locations are plotted in Fig. 32. The points were

selected because most of those locations had significant precipitation

at the initial time. For each location in Fig. 32, Fig. 33 contains

the forecast precipitation for each 0.1-hour interval for the first

1.6 hours of the forecast period. Fig. 33 also contains the "observed"I.
r
I _ _
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Fig. 32. Locations at which the initial

I precipitation was examined.
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I 0.14-

0.12" a. Location 1.

0.12 '0-

SOb. Location 2.I i

0.0c. Location 3.

I
~~0.06 . ..

0.04- d. Location 4.

I I i I ' : , ,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 L3 L4 L5 I
Time (hours)II I I II I I .. , . . ..I I I

0 2 4 6 8 1 0 12 14 16 I8 20 22 24 26 28 30 32
Time step

Fig. 33. Initial precipitation rates (cm h- ) at the locations
in Fig. 32 for the first 1.6 hours of the forecast
from Forecast 5. The dashed line represents the
"observed" initial rain rate as depicted in Fig. 13.
The solid line is the precipitation amount for each
two time-step period (0.1 hour).
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Fig. 33. (Continued).
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initial precipitation rate. The observed rate was taken from the

same four-hour average precipitation rate that was used for the

diabatic term of the omega equation (Fig. 13). The purpose of Fig. 33

is to show how well the forecast initial precipitation rate for

IForecast 5 matches the observed initial precipitation rate. At most

of the points, the forecast initial precipitation rate is near the

1 observed rate. Also, the forecast rate is relatively constant

indicating that the initial divergence did not dissipate or migrate

away from the initial precipitation area. The worst result was at

location 5. It is near an area of relatively light observed initial

precipitation. Also, the initial moisture analysis indicates that

location 5 is on the edge of the saturated area. Therefore, the

initial divergence probably did not initiate precipitation fast enough

for the divergence to be maintained. Recall that saturated initial

conditions are essential for divergent initialization in areas of

Iinitial observed precipitation because immediate latent heat release

fis required to maintain the upward motion associated with strong

convergence. Otherwise, the iiitLal divergence would be dissipated

by internal gravity waves.

Fig. 33 demonstrates that the initial divergence is retained

I reasonably well. However, it is possible that the initial divergence

produced precipitation at an unexpected location. For example, the

precipitation that was expected at location 5 could have occurred

to the south or southwest of location 5. This possibility will be

examined in Fig. 34. Figs. 34b through 34o contain the initial

I
I
I

I- - -----
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forecast rain rates (0.05 cm h contour interval) for each 0.1-hour

[ period for the first 1.4 hours of the divergent initialization

experiment for that portion of the domain which had the highest

Iobserved initial precipitation rate. For comparison purposes, Fig.

I 34a contains the observed initial precipitation rate (0.05 cm h
-1

contour interval) as well as the five locations from Fig. 32 that

fall within the area of heaviest precipitation. First, note that the

zero contour is forecast well in the northwest, east, southeast, and

I southwest portions of the region portrayed. Second, the highest

initial precipitation rates occur on too small a scale to be retained.

Sufficient vertical motion to sustain them was probably not diagnosed

I by the omega equation on that scale either. The largest forecast

rain amounts that did occur are in Fig. 34b. These could be due in

I part to the relatively high initial noise level since no attempt

was made to obtain a divergent wind component that was exactly

I compatible with the nondivergent wind component. Third, although

the forecast 0.1 cm h-I contour covers a smaller area than the

observed one, note that it consistently remains about the same size.

It is almost exactly the same size in Figs. 34d through 34h and again

in Figs. 341 through 34o. There are no rapid changes in the

forecast pattern that would be associated with the dissipation of

the initial divergence. Fig. 34 shows that the divergent initialization F
experiment did not forecast the total observed amount because the

highest observed precipitation rates were not duplicated and because

the area of heaviest forecast precipitation was not as large as the

corresponding observed area.

I!

It
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Figs. 33 and 34 demonstrate conclusively that the initial

j precipitation rates were steady and duplicated the observed initial

rates reasonably well. The divergent initialization was useful in

improving the initial precipitation rates. The following are possible

reasons why the divergent initialization experiment did not duplicate

the observed initial precipitation rate exactly:

I () The forecast model's cumulus parameterization, which

was responsible for most of the initial precipitation,

might not be producing precipitation at the correct

rate for the given profiles of specific humidity and

the dynamic variables.

(2) The moisture analysis may not have been saturated

over a large enough area to support the necessary

latent heating rate implied by the initial vertical

I motion field.

(3) The initial divergent wind component was not completely

j compatible with the nondivergent component.

(4) Some of the initial divergence may have dissipated

I before latent heating had time to support it.

(5) The heaviest observed precipitation rate occurred on

a scale too small for the omega equation and/or the

forecast model to represent on a 120-km grid mesh.

For this case divergent initialization significantly improved the

short-range forecasting of precipitation with a mesoscale numericalI
I!

I :: :
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weather prediction model started from a static initialization.

SGreater improvements would be likely for cases with higher precipitation
rates at the initial time. 0!

[ 7.4 Chapter sunary

[In this chapter five 12-hour forecasts were compared in which

the forecast model was initialized in different ways. The five

initializations were presented in Fig. 20.

The externaLgravity-wave noise characteristics of the forecastsI.ap* ~p
as measured by 1- and were not greatly different although

at
the forecasts from unbalanced initial conditions contained more noise.

These measures of noise levels were comparable to those values

i reported by Anthes (1978) and Bleck (1977). Sundqvist (1975) reported

that a lower noise level resulted from an initialization on sigma

I surfaces. We did not obtain a reduced noise level in the experiments

balanced on sigma surfaces. This was probably due to the smaller

grid increment, unsmoothed terrain, and limited domain used here.

I The 500-mb RMS omega curve for the divergent initialization (Forecast 5)

was significantly different from others as it exhibited less

variability during the 12-hour forecast. The internal gravity-wave

activity in the forecast from the divergent initialization was

therefore more uniform and the model was initially closer to a

"balanced" state. The 500-mb RMS omega graphs exhibited similar

(behavior to those of Okland (1970).

!..1 __ _ _ _

' , _ __

- - ... .
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The forecasts of sea level pressure, temperature, and wind fields

Iwere not significantly different in terms of RMS error. That is,

the divergent initialization did not improve the forecast of these

variables. The Sl forecasts for sea level pressure were best for the

unbalanced experiments, especially for the forecast initialized

directly with observed data.

The precipitation forecasts were compared in several ways. The

forecasts for Forecasts 3, 4, and 5 were scored with the objective

I procedure presented in Appendix 3. This procedure is a type of

pattern recognition evaluation and can determine if the forecast

precipitation is in the correct location when compared with the

observations. When measured with this technique, the forecast with

divergent initial conditions did much better in the first three hours.

However, over the entire forecast period, all three forecasts scored

equally well.

I The total precipitation amounts over the entire domain were

compared with the observed amounts. It was found that the amounts

for the nondivergent experiments gradually rose until about hour 9

[ and then gradually decreased. Although a maximum occurred in the

divergent forecast at about hour 9, the precipitation amounts were

[relatively uniform for the entire forecast period. The changes in

forecast amounts for the nondivergent experiments were related to

I the adjustment occurring in the model. In the forecast with

divergent initial conditions, the model was much closer to a balanced

state at the beginning of the forecast.

II
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Forecast 5 produced significantly more precipitation in the

12-hour forecast period. Much of the improvement in the forecast

precipitation amounts came in the first three hours. The nondivergent a

I forecasts started with a precipitation deficit and did not make up

that deficit later in the forecast. The best short-term precipitation

forecast was obtained with the divergent initialization.

The initial forecast precipitation rates were studied at selected

points and for that portion of the domain containing the highest

I precipitation rates. The initial precipitation rates were nearly

uniform and the area enclosed by specific contours was relatively

constant. Although the highest observed initial precipitation rates

were underforecast, both in terms of maximum rate and the area covered

by a given contour, the forecast model did indeed retain a substantial

.1 portion of the initial divergence.

Divergent initialization on the mesoscale was successful in

improving the precipitation forecast for this data set. It improved

I the forecast in two ways: (1) the initial precipitation rate was

almost uniform and allowed significantly higher precipitation in the

first three hours, and (2) the total precipitation amounts through

the entire forecast period were more realistic.

I'I

I
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8.0 SUMMARY AND CONCLUSIONS

Numerical weather prediction in general, the initialization of

primitive equation models, and previous attempts at the initialization

Iof the divergent component of the horizontal wind were reviewed in

this thesis. Most prior divergent initializations were on the

I synoptic scale and, on that scale, had little effect on the initial

precipitation rate.

IScale analyses were conducted to establish the form of the
vertical velocity and divergence equations appropriate on the mesoscale.

The effect of the assumptions used in neglecting the time dependent

terms in the vertical velocity and divergence equations was analyzed.

The scale dependence of divergent initialization on the synoptic and

I mesoscales was examined. For the vertical velocity equation on the

synoptic scale, the diabatic term is of the same order as differential

I vorticity advection or the Laplacian of temperature advection. Also,

the Coriolis term was important. On the mesoscale, the diabatic

term dominated in precipitation areas and must be included. The

Coriolis term was not nearly as important on the mesoscale as it was

on the synoptic scale. For the divergence equation on the synoptic

I scale, the Coriolis term was on the same order as the other most

significant terms. However, on the mesoscale, the effect of the

I earth's rotation was less important.

The general divergent initialization scheme required the solution

of elliptic partial differential equations on a limited domain.I
I
II
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Since the domain was not cyclic or periodic, boundary conditions on

the dependent variables were required. After an examination of what

properties the boundary conditions should possess, suitable boundary

I conditions for geopotential, omega, and stream function were stated.

A new method for the determination of boundary condition on velocity

potential on a limited domain, mathematically equivalent to a Green's

function solution for an infinite domain, was found such that the

low-wavenumber boundary variation of velocity potential was accurate.

This method's effectiveness was demonstrated on analytic velocity

potential fields.

The forecast model used, the PSU mesoscale model, and its

I nondivergent initialization scheme were discussed briefly. The

synoptic case chosen for study was also presented.

The finite-difference form of the omega equation was derived.

From experiments conducted with this equation, it was concluded:

(1) The quasi-geostrophic omega equation with a diabatic

I term overestimated omega, especially in precipitation

areas.

(2) The diabatic term in the mesoscale omega equation

was the single most important term.

(3) The largest single uncertainty in the determination of

I omega and the divergent wind component was the

representativeness of precipitation observations.

I This uncertainty was transmitted to the divergent wind

components themselves. The uncertainty was large

,. r
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enough that there is no advantage to calculating

I vertical velocities directly in sigma coordinates

in order to avoid interpolation error.

The balance equation consistent with the model was derived in

[ finite-difference form in sigma coordinates. The procedure for

applying the balance equation was outlined.

Five experiments were conducted which started from the same

synoptic time but which were initialized in a different manner.

The initializations were:

I (1) independent (unbalanced) analyses of winds and

I temperatures;

(2) as in (1) except the divergence was removed from

J the winds;

(3) nondivergent winds, geopotential calculated on

I pressure surfaces from the balance equation, and

hydrostatically derived temperatures;

(4) nondivergent winds, geopotential calculated on

sigma surfaces from the balance equation, and

hydrostatically derived temperatures; and

j (5) nondivergent and divergent wind components,

geopotential calculated on sigma surfaces from the

balance equation, and hydrostatically derived

Itemperatures.

I

I

' _ __ __ _ __ __ _I Ij
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At the completion of each balanced initialization, superadiabatic

lapse rates were present in the lowest model layer in the vicinity

of the surface low pressure area. These were removed by applying a

convective adjustment procedure to the balanced data.

j The forecasts were compared and the following conclusions were

reached:

1(1) There was no large difference in the external gravity-

f Iwave noise characteristics of the forecasts as measured
i2

by graphs of -and I versus time. However, the

forecasts with unbalanced initial conditions had a

consistently higher noise level than the balanced

forecasts.

(2) There was no significant difference in the RMS forecast

I errors of sea level pressure or temperature and the wind

components at the 400-, 500-, and 700-mb levels. This

i result was expected. The SI scores for sea level

pressure were best for the experiments with unbalanced

initial conditions.

1 (3) For the experiments with balanced initial conditions,

the precipitation forecasts were scored by an objective

I procedure. For the first three hours of the forecast,

the divergent initialization experiment scored higher

I than the other forecasts. For the entire 12-hour

i1 period, all the forecasts scored equally well.
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(4) The nondivergent forecasts experienced a precipitation

deficit in the first half of the forecast period

because the model had to develop a divergent component.

They produced nearly the same amount of precipitation

as the forecast with divergent initial conditions during

the last half of the forecast period. Therefore, the

[ divergent initialization produced the most accurate

precipitation forecast for this case.

(5) The precipitation amounts for each hour were more

realistic in the forecast with divergent initial

I conditions. The nondivergent forecasts displayed an

I oscillation associated with the mutual adjustment of

the model's nondivergent and divergent wind components.

(6) The model "remembered" the divergent component in the

experiment with divergent initialization. The initial

i precipitation amounts were nearly uniform. The area

i covered by the highest observed initial precipitation

rates was underforecast and, therefore, the divergent

I initialization experiment did not predict as much

precipitation as observed.

1 (7) Since the experiment with divergent initial conditions

was initially closer to a balanced state and its

i initial precipitation rate was the most realistic, we

conclude that the diagnosed omega values were sufficiently

accurate to be useful in the divergent initialization

I performed here.

jI

I
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This thesis has the limitation that only one data case was

I studied. Even though this divergent initialization experiment

significantly improved the short-term precipitation forecast for this

data set, it cannot be concluded that divergent initialization will

[ improve the precipitation forecast in every case. However, the

divergent initialization procedure that was developed was general

and should produce improved short-range precipitation forecasts on4

other cases.

8.1 Suggestions for further research

I The balancing procedure described in Chapter 3 which is currently

used by the PSU model should be improved. It can be made more

consistent with the model while still balancing on pressure surfaces.I
Presently, temperatures are derived at dot points and then averaged

to get temperatures at cross points where temperature is defined in

the model. Temperatures should be derived directly at cross points

since every unnecessary averaging or interpolatlon step introduces

error in an initialization.

Manually digitized radar (MDR) data should be used to obtain

the precipitation rate required by the divergent initialization in the

omega equation diabatic term. These data are described in Moore et al.

(1974). MDR data can provide a precipitation rate which is more

spatially representative than raingauge observations, since MDR data

represent entire grid squares. MDR data can also be obtained more

I
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|F readily than rainfall observations. Unfortunately, MDR data are

i available only over the eastern half of the United States and therefore

are of only limited usefulness.

The divergent and nondivergent initializations could be

improved by incorporating a three-dimensional analysis scheme before

the balancing procedure. This analysis should consider significant

* levels reported in rawinsonde data. This change should improve the

vertical consistency between the mass and momentum variables, eliminate

most of the superadiabatic lapse rates, and therefore enable the

model to produce better forecasts.

The precipitation forecast produced by the divergent initializa-

tion presented here should be compared with a dynamic initialization

on the same data set. This would determine which technique produces

the better precipitation forecast. It is possible that the divergent

initialization would produce comparable forecasts and at a significantly

I reduced computer cost.

( The divergent initialization procedure should be applied on the

synoptic scale. Then the results could be compared with those of

other investigators.

For the forecasting of significant precipitation events, better

I forecasts would result if a complete radiation parameterization were

incorporated into the model. This would be most useful in convective

situations.

The divergent initialization scheme presented here should be

extended to include the time-dependent terms in the omega and
I

1
*1
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divergence equations. The divergent initialization scheme could then

[ be used at grid increments as small as 10 km. At a 10-km grid

increment, an improved moisture initialization coupled with a

rdivergent initialization would perhaps yield even better precipitation

I forecasts.

The divergent initialization scheme presented here should be

tested on a grid increment of about 60 km for a heavy precipitation

event. For example, the scheme should be quite useful at that grid

I increment in the initialization of hurricane models. If precipitation

rate data is available (e.g., from satellite data) for a hurricane

case, this technique should provide a realistic hurricane

initialization.

I
I
I
I
I
I

I
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I
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APPENDIX 1

DERIVATION OF THE FINITE-DIFFERENCE FORM OF THE OMEGA EQUATION

I Recall

V2 (a + 2

R2 R2p

+ faV V4 + IVV VT+ V 2V VT
p - x p - P _ x

(2.23)

R ~ 2 af g a

where a RT9

For each term, we will now derive its FD analog.

ITi: From (2.23a), we can get

R [IT T1
0~ =-[--c-1(Al.1)

Applying (A1) at point ijkhwge

R d"k Tk4-

a ij~kh k4- a~k+ (Al+ a

Ik;



We will solve the FD analog of (2.23) for omega at full (standard-

II pressure) levels except for the top (200 ml,) and the bottom (1000 mb)

levels. Therefore, a aijik~ is interpolated to ao ij~ using

a . Since we do not have temperature data at the lowest pressurea
i,j,k

level, we set a -~ iJ2 Therefore, TI becomes, for level k,

I (a8il wijl a W
i~j~l~ki+l,j,k i+l,j,k

+ +aWi~j1 (Al.2)

1 5 ~~i,j,k wj)m/x

or

Tl m 2(a W) x+m 2(a sW) yy(Al.2a)

in FD notation at point (ij,k).

[T2: fc f1  [m(vij )x -M(uikY

aw _ i,j~k jky

ap2 6Pk 6pk
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Therefore,

T2 f [m(vij) m~uik 6W &iljk (A.3

[ The terms on the RES of (2.23) are forcing functions. Since we do not

yet know omega, we do not know u or v Hence, we will first describex x[ the terms we can compute: T3, T5, T10, and Til. Also, the forcing

functions will first be computed at half-levels.

T3: "I -V*/
ap -'P k3

f fii [(y V )ijk+l - YViijk

'il i~ -u %ijkl(ijkl)x+*,j,k l( ~~~)y(l4

u *~j~ (i,j,kx - v Pi,j,k (ijk

T5: (-7V v. VT)ij

R T 2 j(T

2p kA i [2 Cmi'ji jkl (T~j,k+l x

I ~+ mi1 V (T~1 klyx + m 1 (m~ ~ (Ti

i' ~~jkli,j,k ,~

(T (Al.5)

+ , i,j,k yyy

WeI4
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I R V2TIO: - -c cpp

* ~where Q is the heating rate per unit mass. To determine the vertical

U Idistribution of Q, we follow Krishnamurti (1968a) and Anthes*. The

specific humidity, q, is defined as the ratio of mass of water vapor

to the total mass of air volume. If q is changing with time following

1i a parcel, then

I dhLd- =-L dt Al6
dt dt

I
is the heating rate per second per unit mass of air (L = latent heat

Iof condensation -- 580 cal/g of water). We assume that, in areas of

precipitation, the air is saturated with respect to water vapor. In

Ithat case, expanding the material derivative on the RHS of (Al.6)
yields

i dh . qs aqs

L- --"L--+ VH.-Vqs + w -- ) -(A1.7)
dt a t +

We further assume that, in regions of precipitation, the first two

I terms on the RHS of (Al.7) are negligible compared to the third.

That is,

Anthes (1976) assumed a parabolic distribution of omega in the vertical
arising from the latent heating. The entire portion of this description
dealing with the determination of the parabolic omega profile is taken
from his unpublished notes.

I
I
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I dh-_ - Lw sp (Al.8)

p. a

Integration of (A1.8) over the depth of the precipitating column per

unit horizontal area can be written

1 t dh J Pt aq
p - -t g f w dp (A1.9)

We can calculate , the heating rate through the column per unit area,

from the rainfall rate, R (cm/d). First convert R to mass/(cm a):

I icm H 20 d -  g cm- H 20 d- x 1 d/8.64x105s

..174i-5 gc-2 -1
s H.1574x0 gcm s H120

LR - 6.71x10c-
3 a cam- 2 s-1

-2 -

- 281 joule m a

( Therefore,

I d LR - 281 R (Al.10)

I
Combining (Al.9) and (Al.10) yields

i ,, w dp L dt

-3I 1.134 R g s H20 for [R] * cm d- I  (Al.ll)

- 1.134xi0 6 R cb s- I

I

II
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I Pt

i Pi 1/2 (P,+ P,)

1PM

I Fig. 35. Parabolic convective omega profile.

Iqs

Now, we know _ from the initial data since we know the temperature

at the pressure surfaces.

The third assumption in the determination of Q is that the omega

I profile that results is quadratic in pressure (rererence Fig. 35).

w(p) - a + bp + cp 2(Al.12)

IThe boundary conditions on the omega profile are

W(p) W t (Al.13a)

and

W(p)-0 . (Al.13b)
t

4'
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We also know thatI

S(pm) W max (Al.13c)

Therefore, we can write

i M a4+bp5 +cp8
2  (Al.14a)

m bp +cp 2 (Al.14b)

2_ 2

Ot ab x + p 2  (Al.1+p)II

Eliminating a between (Al.14a) and (Al.14c) yields

I
2 2

W - x b(ps-P) + C(p -P) (Al.15b)

It st 5 t

Dividing (Al.15a) by (ps-Pt) and (Al.15b) by (p P and eliminating

b between the resulting equations yieldsI

Wo -to tSmax - (Al.16)
Dii (psPm) (pmPt) psp t  i

b beweentheresutin equtios yildsL

w- L

t!a
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We now get b in terms of c from (Al.15b):I

b PsP -c(ps+p) (Al. 17)
ps-p Sm

( Given b and c, we obtain a from (A1.14c). Then (Al.12) can be solved

for omega at any pressure level.

j To calculate c, we need to know wmax We write (Al.lI) in FD form

as

IJ
IG4AX
E W R' (Al.18)
k-l

where R' = 1.134xi06 R and KMAX is one less than the number of levels.

Substituting (AI.12) into (A1.18) yields

I KAX KMAX KMAX 2
E a6qk+ + E bpk+ 6qk+ + Z cP k+ 6qk+ R . (Al.19)

k-l k-l k=l

Equation (Al.19) can be rewritten

I af1 + bf2 
+ cf3  R' (Al.20)

I where

I AX
f I E 6qk+ 1 '(Al.20a)i k-i

I
I
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IQAX
f E Pk+ qk+ (Al. 20b)
Sk-liI

and

I ,. KKAX2

Note that we can calculate f 2 ' and f3 " Solving (A1.20) for c yields

I R' - af1 - bf2  (Al.2l)

3 3

INow, solving (Al.14c) for a yields

a -bPt -cp 2  (Al.21a)

I
Using (Al.17) in (Al.21a) for b and inserting that result into (Al.21)

leads to

C c R' + [t-wmax c p +p P
f3 P- Ps+mm t

+ cP t 2} fl- [t- max C(Ps+pm) ] f2]  (A.2
ps-Pm(A.2

R ' + Wt-Wmax (Ptfl + f2) I
PsPM t1 2

i Let h be the denominator of (AI.22). Now, substituting (AI.16) into

p-PP

(Al.22) and solving for w x using the result that ps- 1/2, we get
ma 

StI}
I'
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i W c W - (p t l-2) + R'(ps-Pm ) (pm- pt )

m h h (Al.23)

PmPt(p f-+fp2)

I
To sumarize, we can calculate from observations R', f1 9 f2 ' f3 '

I Ps, 9 s and upon setting pt, we know pm. Therefore, we can use (A1.23)

to get w max We then use (Al.22) to get c, (Al.17) to get b, and

I (Al.14a) to get a. Omega as a function of pressure is now given by

(A1.12). Since we know the omega profile due to latent heating, we

I can return to (Al.Il) and calculate

-a 6qsk+; (Al.24)&k+;i w
M - kA 6pk+

I
whereI

Sk+A
I qk+ = k+

(Al. 
25)

Im L 1 i!_
0.622 x 0.611 x exp DRL 2- -

Pk+ 273 Tk+

Finally, given Qkj , we calculate T1O using

I T- R Qk xx + k+ )yy]Cp Pk"A

I a Fr

TlI: TlI f ap

I
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First of all, this term only applies in the lowest level (K=KMAX + 1).

I Secondly, it only applies to the lowest 10 cb of the PBL. Hence Ap

in Tll is 10 cb. As in the forecast model,

Frx g Ps C VMAX+I UKMAX+I (Al.27)

I where Fr is the x-component of the frictional force, p is theweeFx  s

surface air density (here, 10- 3 g cm- 3), CD = 0.002, uKMAX+I is the

1 1000-mb u component, and VKMAX+J is the 1000-mb wind speed, calculated

from

, j2 2
VKAX+ (uKMAX+ + VKMAX+l (A1.28)

f Similarly,

I Fry = g P C VA V (A.29)

y D IQ4AX+l KMAX+l(l2)i
Recall that we now know the forcing functions T3, T5, T10, and

ITll at half-levels. Therefore, we interpolate them to the full levels

from K - 2 through K - KMAX. Let Fi, j ,k represent the total forcingF
K function at each grid point. We can now rewrite TI, T2, and Fijk'

using (Al.2a) and (Al.3), as

mi'2 [(a''kx + wi''kyy
, in si,jk (ijskxx i,j ,k Jk yY

' (A. 30)

+ m 2 f [(v(u 6 i,j k F
, f, J [(viJi,)x- (uijk)y] 6Pk = Fi'jk

I
I

_ ,:...._ ,,,- --.. ,. - : ,,: ,,_____,,,__,____,.___,__-__,____-_-- ______."....._
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I

Mathematically, this is a second-order elliptic PDE and, given

l boundary conditions on the top, bottom, and side faces of the domain,

(Al.30) can be solved by a standard relaxation technique (Haltiner,

I 1971). The appropriate boundary conditions that will be used are

given in Section 2.3.3. Let Rn be the residual (the difference
i~j ,k

between the LHS and RHS of (Al.30)) after the n iteration using

wink. Then, we want to find w such that Rn+l 0. First,
n T we wi,j,k i,j,k

leaving out map factors, we writeI
Rn n [(n) +( n)I i,j,k (Ax)2  s i+l,j,k s Wi-,jk

+ (a sn)i,j+l,k + (osWn)i,J-l,k -4(asWn)i,j,k
]  

1

(Al.31)n n
+2Bgi,j,k [ i,ilk1 - W i~jk

I k-l-pk+l Pk-l-pk
n n

W ij,k i,jk+l _ Fi

pk-Pk+l ,j|I
where B = f ,k Adjusting win.k such that Rin+ =0

i,j,k i~j i,j,k' ,j , k i,j,k

l gives

1 n + ( n n
(Ax 2  s i+l,j,k + as W i-l,j,k + (a [( Ws i,J+l,k" (Ax)2,

I + (asW n)i, j-lk - 4(0 W+l)i,j,k ]

n n+l n+l n

+ i.j.k [i,_ k-i - wi,j,k _ wijk- i,j,k+l]
Pkl-Pk+l Pkl-Pk Pk-Pk+l

I1
1.~ -
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Subtracting (A1.31) from (Al.32) and simplifying yields

rt+l n
W
ijki,j,k (Al.33)

+ 4a5 2
ai.j~k 2B i,i~kkkl

After applying (Al.33) repeatedly, we will have omega at every grid

point in the 30 x 35 x 7 domain. With this knowledge, we can apply

the method for the determination of XBdiscussed in Section 2.3.4 to

determine u and v at the half levels. Interpolation provides u andx x x
Iv Xat the full levels. Now we can return to calculate the remaining

forcing functions in (2.23). They are T4, T6, T7, T8, and T9.

T4: This term is exactly like T3 except in (Al.4) replace u

u i , vijk , and v ijklwith u X ,ku X~~~ (~~

Iandyv X ,jkl.respectively.

16: This term is exactly like T5 except in (Al.5) replace u

U ijk~'Voi~k.and v 9ij~ with u ,~ u~ijk, ,v,

.1and v X , ~ ~ respe-tively.
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T7: f

SDi j, k:+ is available from the determination of u and v since

I Therefore, we can write T7 as

i,J i, i,k j k+

I__ T7 is valid at half levels.

T8: f-u

ap ap
T8 -f ' dkwkT-- 'i,j,k (AI.36)

T8 applies at full levels.

Iap ap

T9 T9:W(l.7

I' Sp iWiix' j k w 5Jk jkh

T9 applies at full levels.

To incorporate these terms into the omega relaxation scheme, we

must first interpolate T4, T6, and T7 to full levels. Note that T8I

I
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and T9 already apply at full levels. Second, only one of the above

terms contains wiJk itself. Expanding (Al.36) we get, for the nth

iteration,I
f (

T8- n n i,.k+- k

pkI-pk_1 2 ( ,J,k+l + i,j,k Pk+l-Pk

(Al. 38)
' i 1 n n(Ci,j,k - i,j,k-1 ]

-2 - , jk + n ik-1 )  pk-Pk l1

Y We can now place this term on the LHS of (AI.30), perform the appropriate

i modification to (Al.31) and (Al.32), and in place of (Al.33) we get

I

I n+l n i,j ,k
i,j ,k =  i,j,k + Tl + T2 + T3 + T4

whereI 5o

Tl - si,j,k

i (Ax) 2

T2 1 2 B i ' j ' k  I + 1

IPklPk+ 1 Pk-l-Pk Pk-Pk+l

IT3- f'i j(Ii.1k-l - Ci'j'k
(Pk-l-Pk+l) (Pk-l-Pk) '

I
and

fT4 f iJ(C )i'jk i'j'k+l

(Pkn i Pk+l) (Pk-Pk+l)

. ..Il-l ' I .. .. .I~
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After applying (Al.39) for a sufficient number of iterations over

i the domain, we have omega defined over the domain to the accuracy

permitted by (2.23) and the observations.

I Given omega over the domain, we can compute the divergence and

velocity potential, the latter of which provides u and v . This| x x
completes the set of data required for the divergent initialization

i on sigma surfaces.

I
l

4

I
I!

I+
I

I

I
I
I
I
I

..... _______-__-____ T-- _____________n ___________t____
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* APPENDIX 2

DERIVATION OF THE FINITE-DIFFERENCE FORM OF

I THE BALANCE EQUATION

I The term designators used refer to the terms in (6.6).

Ti and T2:

< I 2A i+ ,j+ i- , J+ - i-f- ,i- i- ,J-

I where i and j refer to dot points.

I x 4Ax '"'+i,j4 + oi j+ -; i+i,j-l j-

TI- (Ty) Mi. r * - -+

xc x 6x 4Aic i+i,j+1 i,j+1 i-4-,j ij

IA 0 mi. 14 + ,i-1,j+1 -i -l j

I4Ax 0i+i,j + i,j - i+i,j-l i. - l

IA 0 111i ( + * .,.,. - j-

where i,j now refer to cross points.



I Similarly, for T2,

y Ax i+ jj; + ,J-31 - i.,j+ - i-;, J

w here i,j refer to dot points.

-c m m .~,.,

T2 (4~ j j A 4Ax 0 i+iJ, j+ i+1 j - ±j+i

+ 4Ax 0i+lij + 'o±+i,j+i i'J- jQ

4I -
3 i1+ + i - l -

(0 0 .l-I- 4ax i~ + *ilj. i-, -l,

I where i,j now refer to cross points.
Sumnming Ti and T2 yields the LHS of (6.6):

Ti + T2 il 2 Im+, iAJ+ 4 0i+1,j+1 + mi... j+ i1 , J+l

Note that in FD notation,

4 + mi4-I i- I J M + mi- j4 1+mi J
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The RHS of (6.6) (terms T3 through T12) are the forcing functions.

I Once these are evaluated, they can be used with the expression for

the sum of Ti and T2 to solve for ij

T3: u - V(u i j+ + :i'j..) where i,j refer to dot points.

Note that p~u - U*.Let pi *,jand let

I~ A i,j i j* Then i 4m', Ci+1 j + 2A +A -

m ~-I iii i i

' T3a I (A1 ,~ +2A 1,J + Ai_,.+)

m~~~ ij- "Ij+

+1 1 ( ~~ Aij +AiIJI u~ ~ ij
(u +-u (Ai+. ~ + 2Ai j + Alj..)

I (~ T~a) x 1 F(A1 (Aij~l + A ~ i.j

i~l~j-i +

I ~+ ( 2
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Le li~ij i+l, j +1+2 i~j+l +Ai-l,j4-l

A2, -A,+ + 2A +AI~~ ~~ i+ ~~ ~ i-l'j
A3,, - A,+, + 2AJl+Aj

Simplifying yields

(mTa (I (ui 1 +ui 1 )
'uTa LI ij Al j-ll &

16Ax m 4 4j 1  i~j + m i~j

+ ui~i-j

A3 i~

T3b - u Ta,i pidj

in (u + u )(u -
L L~ I~ j - Al + A2

-'-1 A3 iI' -
I 6Ax T i'j

I where i,j still refers to dot points.

IT3 - i+ .l+)I (T3cj~ + T3c -T3ci, -T3c)Ii+;Ij+h 32(Ax) 2  ilj i,j+l iilj

1 Note that l+ -,J+ i is a cross point. For example,
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2

T3c =+, i+1,j+1 ( 1+1.1+2 +ui+111+1 Al + Jl

+l A2+1,j~jI i+j~l i+,j+

I +(u 1+1 1+ -u+i A 1 1 ~

mi+,; j 1+1.1 A314

IT4: Noep * Let pj~ T-X and B p Pjvij

Then (B~ 2B +B )

T m = ',j m ci,j+l + 2 3i +Bj...

+ 1 B i;l + +2B i-Ij+ BIi-)

16x i-,j+ 1-, i- ,j-1J-

i-,j

Le BI i l 6A m ~ Bi+lj + +1Bj++ A-,j i1,

-Cua +u )(-B +2 +B
1l ,j i1, D i,j 1 Lj ij

B i nJBil l+2 1 -1 ,j + B i-1, -
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Simplifying yields

CJ* T4a) y - i ~~ 4-u11) Eld + (u~1  U 1 1 u ) B2
y 6Ax in im i~j14-id i'j

(u Ciij ui..1) B

I TO mb I-uY T4a)y

i. Cul' + ulij + ~~ )-,)B

B3 I

1

I - y1 T4c

Therefore, T4 at cross point i+ ,J+ j can be written

T4 2+,J (T4ci+1 .jc ~ii+11, i +; 32(tax) 2I T~lj c -T+ -Ti~c )~~

T5S: T5S is analogous to T3 except that in T3c, u is replaced with

v and, because the outside differentiation is with respect

to y instead of x, the final expression is

T5 i , 4 - 2 MTc 4-1~4-1 + T3c 14-li - 3c ij+l -T3c ii

I2Ax

4L
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T6: T6 isa analogous to 14 except that in T4c, u is replaced

j with v and, again because of the outside differentiation,

the final expression is

T6~~ -AJ 32AxL 2 (T4c i+l J+l +- T4c i+1  - T4c '- T4c i

T7: 1 (a - - 1 (aImp* p

+; u0+

1 u)

a i,j,kh-4( uik +h, + a ( i , j ;, k+ + a i I j4 +I k j + j -, k4

u i ,+ji. k+11 ' (u)Cuijkl ++uuijk)

IX a i~~k~ uij~kAi+ j ;I, + ; A, j- ,k+ + i-, j+hk+)

+ -1 II 44)(i Il+ujk

4I
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TVa ik mii 8mj(k+1 a 0k i+ ,J+ ,k+l i+l, j-,k+l

I+ 0 i- J+ 1k+l + ai-h, j...k+l) (u ijk+ 3,2 + uiijk 4 -;)

i4 , ~ + ,jk + 0i J~ + 0i1,j ;,k

u ~~~i+ "i,-,k-i ,3,k i-,- k

8 (ok -a)T7b
8( +1 k i, j, k+;j

I m
T 7 =- '' i+ljlk + (~ T7b

*i+ ,J+l l66x(a k+l - a ()T~ ,Jl~-b4 i,j+l,k+ 1

~T7 b i+lj ,kP ~ ,jkh

I T8: T8 is analogous to T7 except that the u is replaced by v

g in T7b. Also, the outside differentiation is with respect

y instead of x and the final expression is

T8 iAJ -6x~ -i)4Tb I14 +~k+ + T7b il ~
k+l k~ ~~~~+ ~~~4

I T7 b ij+lk-F -T 7 b ij k+)
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jT9: T9a x - _ a
M7x (1 + 4 t) P*' (1+ Pt/G

ILet p i =J;

.Y' 4 + Ti.ij.... i- +j T i- ,J- h

I i, j 4 (P*i+- j+A + P*i+ ,j.. + P*i...,JA + P*i.. j..)

T y 2xl (P*i4+ ,j 4 h + P*i...,JA - P*J+h,j.. - P*i..,j-h)
i, j

1Therefore, T9a is

T!aLd (T 1A' A + Ti. 'j_ + Ti.. 1+ +T. .. )I i'j 2Ax (P*i.AJ+ + P*i+ ,J.. + P*i... j+ + P*i.. j..

(P*i+ ,J+ + P*i. -hs. - p *i+hl... - P*i. ,I... %
(1 + Pt l'a)

IT9 =+1, ih4(Ax) 2 TMa i +IJ +T9a i+ - T9a -~~j T9a j

T10: TlO is analogous to T9 except that P* replaces p Yand the.1y 'C
outside differentiation is with respect to y instead of x.

P* - x i A I (p P - 3 P- A p -'

10J~4.L
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hij 2Ax (P*i+ ,j+;l + P*iA i-, + P*i.. A +~ +~-l~-

'~k*i .+ (1 + p /a)

T1O. - + i+i, j i,j+i i'jI ~~~~~~~~4 (Ax) a 1 j 1 +Ta -Tla -Ta)

Tl: Tla - _ __ f

I Therefore,

Tll~~ J~4j~ji± 2 (T11a1i 1l~ 1+l Tlla1 i~ - Tilaa1+1 - T3.1a i,)

T12 T2-fp~u fu~ _ fu

m-icy ---Xy m

IT1 2a1 -, jIim

1 Therefore,

T124~j (Tl2a 4 1 1 + Tl2a -Tl2a -Ti2a,)

IA ~ l ~ ~ ~ ~ ~ '
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APPENDIX 3

OBJECTIVE PRECIPITATION SCORING PROCEDURE

In this appendix, we present the objective precipitation scoring

procedure developed by Anthes (unpublished). Mesoscale models are now

I producing forecasts that are finer in scale than synoptic-model

precipitation forecasts. Hence a mesoscale model might forecast the

I correct intensity and shape of a precipitation field but displace the

field by some small distance. This forecast would receive a poor

score with a conventional scoring method but the forecast does contain

useful information. The skill score presented here was designed to

detect forecast displacement errors.

Let PF and PO be N by M matrices of forecast and observed

precipitation, respectively. An example matrix of the 29 by 34 fields

I used here is

I

~i*1P PI p- (AM. )

" 2,1 P2,2 ...

I P P ... P
1,1 .1,2 1,34

. !1
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The skill of a forecast will be computed for various shifts or

"lags" of the forecast and observed fields. A shift of the forecast

field a distance kAx to the left with respect to the observed field

will be given by a positive integer parameter k; similarly, a downward

shift will be given by a positive L. When the forecast and observed

fields are shifted, a skill score vili be computed for the overlap

region only. Let A be the total number of points in the overlap

region. Then A is given by

A - (N -L(M -k) .(A3.2)

I Define the variance of PO in the overlap region as

-1 N-I M-k (Oi -2) LO >

A7 N-1 (P0~i P0) Z>O, k<0I sf 0 : i-i i-i-k (33

-l N M-k -2
A7 z r (Po~- P0) Z<0, k>0Ii-l-I J-i

- N M -2
A7 E E (POi -P0) t<0, k<OI i-l-X J-1-k

I where

PO A E EPO .(A3.4)I ii i,j
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Similarly, the variance of forecast precipitation, SpF, is given by

(A3.3) except that (PO i j -f-O) 2 is replaced by (PFi j - pF)2 The

elements c£,k of a matrix C are defined as

N-L M-k - )
E E (PO J~ - PO)(PFi+LJ+k PF) k>0

i-i J-1

N-Z M ->0

z z (PO - PO)(PF - PF)
il i-k iJ+k k<

ASk. S; c (A3.5)°PO PF CX'k N 
iN H-k - PF) <0

z z (POi j - PO)(PFi+EJ+k PF) k>O
i-i-1 j-1 >

N M -

r E (PO - P0)CPF --PF) <o,
i-i-i J-l-k i'j i+LJ+k k<O

Let z and k vary over some range. For example, let £ - k = 2.

Then the matrix C is

c_2- 2  c-2,- I  c-2,0 c-2,1 c-2,2
c c- c-lO C-l'l c-

1-,- -1,-i -10 -, 1,2
C-C c c 0  (A3.6)

C c0,-2 c0,-i c0,0 c0,1 0,2

Cl1,-2 C l,-1 cl,0O l Cl1,2 [

K Ic c c c c
2,-2 2,-I 2,0 2,1 2,2

I
The elements c ,k of the matrix C are the correlation coefficients

between the observed and forecast precipitation fields for a given

,II
' _ _ - . ,-- , " ' - -
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displacement defined by 2 and k. The maximum element of C represents

the highest correlation between the observed and forecast patterns.

The values of L and k represent the spatial offset necessary to achieve

the best score. Good forecasts would have a large maximum c2 ,k (1.0 is 4

perfect) and, for the maximum cE,k' low values of 2 and k (0 and 0 are

perfect).

I

iS

I

i
I
I
I
I
I
I
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